↓ Skip to main content

Exploration of RNA Sequence Space in the Absence of a Replicase

Overview of attention for article published in Journal of Molecular Evolution, May 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (78th percentile)
  • High Attention Score compared to outputs of the same age and source (83rd percentile)

Mentioned by

blogs
1 blog
twitter
4 X users

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
8 Mendeley
Title
Exploration of RNA Sequence Space in the Absence of a Replicase
Published in
Journal of Molecular Evolution, May 2018
DOI 10.1007/s00239-018-9846-8
Pubmed ID
Authors

Madhan R. Tirumalai, Quyen Tran, Maxim Paci, Dimple Chavan, Anuradha Marathe, George E. Fox

Abstract

It is generally considered that if an RNA World ever existed that it would be driven by an RNA capable of RNA replication. Whether such a catalytic RNA could emerge in an RNA World or not, there would need to be prior routes to increasing complexity in order to produce it. It is hypothesized here that increasing sequence variety, if not complexity, can in fact readily emerge in response to a dynamic equilibrium between synthesis and degradation. A model system in which T4 RNA ligase catalyzes synthesis and Benzonase catalyzes degradation was constructed. An initial 20-mer served as a seed and was subjected to 180 min of simultaneous ligation and degradation. The seed RNA rapidly disappeared and was replaced by an increasing number and variety of both larger and smaller variants. Variants of 40-80 residues were consistently seen, typically representing 2-4% of the unique sequences. In a second experiment with four individual 9-mers, numerous variants were again produced. These included variants of the individual 9-mers as well as sequences that contained sequence segments from two or more 9-mers. In both cases, the RNA products lack large numbers of point mutations but instead incorporate additions and subtractions of fragments of the original RNAs. The system demonstrates that if such equilibrium were established in a prebiotic world it would result in significant exploration of RNA sequence space and likely increased complexity. It remains to be seen if the variety of products produced is affected by the presence of small peptide oligomers.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 8 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 8 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 38%
Researcher 3 38%
Student > Doctoral Student 1 13%
Student > Master 1 13%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 63%
Agricultural and Biological Sciences 2 25%
Social Sciences 1 13%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 September 2018.
All research outputs
#3,706,639
of 23,571,271 outputs
Outputs from Journal of Molecular Evolution
#179
of 1,462 outputs
Outputs of similar age
#70,783
of 326,476 outputs
Outputs of similar age from Journal of Molecular Evolution
#3
of 12 outputs
Altmetric has tracked 23,571,271 research outputs across all sources so far. Compared to these this one has done well and is in the 84th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,462 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.3. This one has done well, scoring higher than 87% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,476 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 78% of its contemporaries.
We're also able to compare this research output to 12 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 83% of its contemporaries.