↓ Skip to main content

Crystal Structure of Aclacinomycin-10-Hydroxylase, a S-Adenosyl-l-Methionine-dependent Methyltransferase Homolog Involved in Anthracycline Biosynthesis in Streptomyces purpurascens

Overview of attention for article published in Journal of Molecular Biology, November 2003
Altmetric Badge

Mentioned by

patent
1 patent

Citations

dimensions_citation
37 Dimensions

Readers on

mendeley
31 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Crystal Structure of Aclacinomycin-10-Hydroxylase, a S-Adenosyl-l-Methionine-dependent Methyltransferase Homolog Involved in Anthracycline Biosynthesis in Streptomyces purpurascens
Published in
Journal of Molecular Biology, November 2003
DOI 10.1016/j.jmb.2003.09.061
Pubmed ID
Authors

Anna Jansson, Jarmo Niemi, Ylva Lindqvist, Pekka Mäntsälä, Gunter Schneider

Abstract

Anthracyclines are aromatic polyketide antibiotics, and several of these compounds are widely used as anti-tumor drugs in chemotherapy. Aclacinomycin-10-hydroxylase (RdmB) is one of the tailoring enzymes that modify the polyketide backbone in the biosynthesis of these metabolites. RdmB, a S-adenosyl-L-methionine-dependent methyltransferase homolog, catalyses the hydroxylation of 15-demethoxy-epsilon-rhodomycin to beta-rhodomycin, one step in rhodomycin biosynthesis in Streptomyces purpurascens. The crystal structure of RdmB, determined by multiwavelength anomalous diffraction to 2.1A resolution, reveals that the enzyme subunit has a fold similar to methyltransferases and binds S-adenosyl-L-methionine. The N-terminal domain, which consists almost exclusively of alpha-helices, is involved in dimerization. The C-terminal domain contains a typical alpha/beta nucleotide-binding fold, which binds S-adenosyl-L-methionine, and several of the residues interacting with the cofactor are conserved in O-methyltransferases. Adjacent to the S-adenosyl-L-methionine molecule there is a large cleft extending to the enzyme surface of sufficient size to bind the substrate. Analysis of the putative substrate-binding pocket suggests that there is no enzymatic group in proximity of the substrate 15-demethoxy-epsilon-rhodomycin, which could assist in proton abstraction and thus facilitate methyl transfer. The lack of a suitably positioned catalytic base might thus be one of the features responsible for the inability of the enzyme to act as a methyltransferase.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 31 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 19%
Student > Ph. D. Student 5 16%
Student > Doctoral Student 4 13%
Student > Bachelor 2 6%
Student > Postgraduate 2 6%
Other 3 10%
Unknown 9 29%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 9 29%
Agricultural and Biological Sciences 6 19%
Chemistry 4 13%
Nursing and Health Professions 1 3%
Medicine and Dentistry 1 3%
Other 1 3%
Unknown 9 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 November 2008.
All research outputs
#8,533,995
of 25,368,786 outputs
Outputs from Journal of Molecular Biology
#4,838
of 11,921 outputs
Outputs of similar age
#20,196
of 57,107 outputs
Outputs of similar age from Journal of Molecular Biology
#35
of 72 outputs
Altmetric has tracked 25,368,786 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,921 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.6. This one is in the 17th percentile – i.e., 17% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 57,107 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 11th percentile – i.e., 11% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 72 others from the same source and published within six weeks on either side of this one. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.