↓ Skip to main content

Nicotine Modulates Mitochondrial Dynamics in Hippocampal Neurons

Overview of attention for article published in Molecular Neurobiology, April 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (57th percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
38 Mendeley
Title
Nicotine Modulates Mitochondrial Dynamics in Hippocampal Neurons
Published in
Molecular Neurobiology, April 2018
DOI 10.1007/s12035-018-1034-8
Pubmed ID
Authors

Juan A. Godoy, Angel G. Valdivieso, Nibaldo C. Inestrosa

Abstract

Mitochondria are widely recognized as fundamental organelles for cellular physiology and constitute the main energy source for different cellular processes. The location, morphology, and interactions of mitochondria with other organelles, such as the endoplasmic reticulum (ER), have emerged as critical events capable of determining cellular fate. Mitochondria-related functions have proven particularly relevant in neurons; mitochondria are necessary for proper neuronal morphogenesis and the highly energy-demanding synaptic transmission process. Mitochondrial health depends on balanced fusion-fission events, termed mitochondrial dynamics, to repair damaged organelles and/or improve the quality of mitochondrial function, ATP production, calcium homeostasis, and apoptosis, which represent some mitochondrial functions closely related to mitochondrial dynamics. Several neurodegenerative disorders, such as Alzheimer's, Parkinson's, and Huntington's diseases, have been correlated with severe mitochondrial dysfunction. In this regard, nicotine, which has been associated with relevant neuroprotective effects mainly through activation of the nicotinic acetylcholine receptor (nAChR), exerts its effects at least in part by acting directly on mitochondrial physiology and morphology. Additionally, a recent description of mitochondrial nAChR localization suggests a nicotine-dependent mitochondrial function. In the present work, we evaluated in cultured hipocampal neurons the effects of nicotine on mitochondrial dynamics by assessing mitochondrial morphology, membrane potential, as well as interactions between mitochondria, cytoskeleton and IP3R, levels of the cofactor PGC-1α, and fission-fusion-related proteins. Our results suggest that nicotine modulates mitochondrial dynamics and influences mitochondrial association from microtubules, increasing IP3 receptor clustering showing modulation between mitochondria-ER communications, together with the increase of mitochondrial biogenesis.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 38 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 38 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 26%
Researcher 6 16%
Student > Bachelor 3 8%
Student > Doctoral Student 2 5%
Lecturer 2 5%
Other 6 16%
Unknown 9 24%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 9 24%
Neuroscience 5 13%
Medicine and Dentistry 3 8%
Nursing and Health Professions 2 5%
Pharmacology, Toxicology and Pharmaceutical Science 2 5%
Other 6 16%
Unknown 11 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 December 2018.
All research outputs
#13,527,706
of 23,342,092 outputs
Outputs from Molecular Neurobiology
#1,691
of 3,536 outputs
Outputs of similar age
#166,274
of 329,946 outputs
Outputs of similar age from Molecular Neurobiology
#52
of 123 outputs
Altmetric has tracked 23,342,092 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,536 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one has gotten more attention than average, scoring higher than 51% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,946 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 123 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 57% of its contemporaries.