↓ Skip to main content

Hypoxia Induces High-Mobility-Group Protein I(Y) and Transcription of the Cyclooxygenase-2 Gene in Human Vascular Endothelium

Overview of attention for article published in Circulation Research, August 1998
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (73rd percentile)
  • Above-average Attention Score compared to outputs of the same age and source (56th percentile)

Mentioned by

patent
3 patents

Citations

dimensions_citation
79 Dimensions

Readers on

mendeley
21 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Hypoxia Induces High-Mobility-Group Protein I(Y) and Transcription of the Cyclooxygenase-2 Gene in Human Vascular Endothelium
Published in
Circulation Research, August 1998
DOI 10.1161/01.res.83.3.295
Pubmed ID
Authors

Yan-Shan Ji, Qing Xu, John F. Schmedtje

Abstract

Cyclooxygenases catalyze a rate-limiting step in the synthesis of vascular endothelial prostaglandins. Expression of the inducible cyclooxygenase-2 (COX-2) gene is increased by hypoxia in human vascular endothelial cells via the nuclear factor (NF)-kappaB p65 transcription factor, which is necessary but not sufficient to fully induce COX-2 transcription in response to hypoxia. After finding that cytoplasmic NF-kappaB p65 and IkappaBalpha (an inhibitory protein that binds NF-kappaB p65 precursors) levels are not changed by hypoxia, we hypothesized that other factors might play a role in regulating the COX-2 promoter, like the high-mobility-group (HMG) I(Y) family of proteins, which features multiple A.T hooks and is associated with NF-kappaB-mediated transactivation. Nuclear protein obtained from human umbilical vein endothelial cells (HUVECs) was supplemented with HMG I(Y) during electrophoretic mobility shift assays using an NF-kappaB-3' element probe. These data suggested that HMG I(Y) proteins interact with NF-kappaB p65 to induce COX-2 promoter activity. We also found that TATA-box DNA demonstrated increased electrophoretic shifting indicative of DNA binding after incubation with either hypoxic HUVEC nuclear protein or normoxic nuclear protein supplemented with HMG I(Y). Transfection of HUVECs with an expression vector containing the COX-2 promoter ligated to HMG I(Y) cDNA demonstrated positive feedback on COX-2 promoter activity in hypoxia. We confirmed that COX-2 is transcriptionally regulated by hypoxia using a nuclear runoff assay. Hypoxia increased steady-state cellular levels of HMG I(Y) mRNA as an early event, corresponding with increases in HMG I(Y) protein. Overexpression of HMG I(Y) was associated in a dose-response relationship with increasing prevalence of the COX-2 protein in hypoxic HUVECs. Furthermore, sense (and antisense) HMG I(Y) overexpression caused stimulation (or inhibition) of COX-2 promoter activity as measured by luciferase reporter gene expression. The physiological significance of these findings was demonstrated by cyclooxygenase-dependent release of prostaglandin E2 by HUVECs in hypoxia. We concluded that hypoxia increases expression of HMG I(Y) proteins while facilitating transactivation of the COX-2 promoter. The HMG I(Y) family of proteins may therefore function as part of a hypoxia-induced enhanceosome that helps to promote transcription of COX-2.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 1 5%
United States 1 5%
Unknown 19 90%

Demographic breakdown

Readers by professional status Count As %
Professor 4 19%
Researcher 4 19%
Student > Ph. D. Student 4 19%
Student > Bachelor 2 10%
Student > Doctoral Student 1 5%
Other 2 10%
Unknown 4 19%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 29%
Agricultural and Biological Sciences 6 29%
Medicine and Dentistry 3 14%
Pharmacology, Toxicology and Pharmaceutical Science 1 5%
Unknown 5 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 May 2020.
All research outputs
#4,862,742
of 23,416,487 outputs
Outputs from Circulation Research
#1,864
of 7,386 outputs
Outputs of similar age
#4,405
of 32,377 outputs
Outputs of similar age from Circulation Research
#8
of 41 outputs
Altmetric has tracked 23,416,487 research outputs across all sources so far. Compared to these this one has done well and is in the 76th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 7,386 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.9. This one has gotten more attention than average, scoring higher than 67% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 32,377 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 73% of its contemporaries.
We're also able to compare this research output to 41 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 56% of its contemporaries.