↓ Skip to main content

Rapid-sequence brain magnetic resonance imaging for Chiari I abnormality.

Overview of attention for article published in Journal of Neurosurgery: Pediatrics, May 2018
Altmetric Badge

Mentioned by

twitter
2 X users
facebook
1 Facebook page

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
27 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Rapid-sequence brain magnetic resonance imaging for Chiari I abnormality.
Published in
Journal of Neurosurgery: Pediatrics, May 2018
DOI 10.3171/2018.2.peds17523
Pubmed ID
Authors

James Pan, Jennifer L Quon, Eli Johnson, Bryan Lanzman, Anjeza Chukus, Allen L Ho, Michael S B Edwards, Gerald A Grant, Kristen W Yeom

Abstract

OBJECTIVE Fast magnetic resonance imaging (fsMRI) sequences are single-shot spin echo images with fast acquisition times that have replaced CT scans for many conditions. Introduced as a means of evaluating children with hydrocephalus and macrocephaly, these sequences reduce the need for anesthesia and can be more cost-effective, especially for children who require multiple surveillance scans. However, the role of fsMRI has yet to be investigated in evaluating the posterior fossa in patients with Chiari I abnormality (CM-I). The goal of this study was to examine the diagnostic performance of fsMRI in evaluating the cerebellar tonsils in comparison to conventional MRI. METHODS The authors performed a retrospective analysis of 18 pediatric patients with a confirmed diagnosis of CM-I based on gold-standard conventional brain MRI and 30 controls without CM-I who had presented with various neurosurgical conditions. The CM-I patients were included if fsMRI studies had been obtained within 1 year of conventional MRI with no surgical intervention between the studies. Two neuroradiologists reviewed the studies in a blinded fashion to determine the diagnostic performance of fsMRI in detecting CM-I. For the CM-I cohort, the fsMRI and T2-weighted MRI exams were randomized, and the blinded reviewers performed tonsillar measurements on both scans. RESULTS The mean age of the CM-I cohort was 7.39 years, and 50% of these subjects were male. The mean time interval between fsMRI and conventional T2-weighted MRI was 97.8 days. Forty-four percent of the subjects had undergone imaging after posterior fossa decompression. The sensitivity and specificity of fsMRI in detecting CM-I was 100% (95% CI 71.51%-100%) and 92.11% (95% CI 78.62%-98.34%), respectively. If only preoperative patients are considered, both sensitivity and specificity increase to 100%. The authors also performed a cost analysis and determined that fsMRI was significantly cost-effective compared to T2-weighted MRI or CT. CONCLUSIONS Despite known limitations, fsMRI may serve as a useful diagnostic and surveillance tool for CM-I. It is more cost-effective than full conventional brain MRI and decreases the need for sedation in young children.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 27 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 27 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 4 15%
Student > Doctoral Student 4 15%
Student > Bachelor 2 7%
Other 2 7%
Researcher 2 7%
Other 6 22%
Unknown 7 26%
Readers by discipline Count As %
Medicine and Dentistry 6 22%
Biochemistry, Genetics and Molecular Biology 3 11%
Neuroscience 3 11%
Nursing and Health Professions 2 7%
Agricultural and Biological Sciences 2 7%
Other 2 7%
Unknown 9 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 May 2018.
All research outputs
#19,951,180
of 25,382,440 outputs
Outputs from Journal of Neurosurgery: Pediatrics
#1,371
of 1,646 outputs
Outputs of similar age
#249,461
of 339,382 outputs
Outputs of similar age from Journal of Neurosurgery: Pediatrics
#41
of 46 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,646 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.8. This one is in the 13th percentile – i.e., 13% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 339,382 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 21st percentile – i.e., 21% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 46 others from the same source and published within six weeks on either side of this one. This one is in the 8th percentile – i.e., 8% of its contemporaries scored the same or lower than it.