↓ Skip to main content

Oxidative stress mediates toxicity of pyridoxal isonicotinoyl hydrazone analogs

Overview of attention for article published in Molecular Cell Biology Research Communications, January 2004
Altmetric Badge

Mentioned by

patent
1 patent

Citations

dimensions_citation
34 Dimensions

Readers on

mendeley
18 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Oxidative stress mediates toxicity of pyridoxal isonicotinoyl hydrazone analogs
Published in
Molecular Cell Biology Research Communications, January 2004
DOI 10.1016/j.abb.2003.09.044
Pubmed ID
Authors

Joan L. Buss, Jiri Neuzil, Prem Ponka

Abstract

Pyridoxal isonicotinoyl hydrazone (PIH) and many of its analogs are effective iron chelators in vivo and in vitro, and are of interest for the treatment of secondary iron overload. Because previous work has implicated the Fe(3+)-chelator complexes as a determinant of toxicity, the role of iron-based oxidative stress in the toxicity of PIH analogs was assessed. The Fe(3+) complexes of PIH analogs were reduced by K562 cells and the physiological reductant, ascorbate. Depletion of the antioxidant, glutathione, sensitized Jurkat T lymphocytes to the toxicity of PIH analogs and their Fe(3+) complexes, and toxicity of the chelators increased with oxygen tension. Fe(3+) complexes of pyridoxal benzoyl hydrazone (PBH) and salicyloyl isonicotinoyl hydrazone (SIH) caused lipid peroxidation and toxicity in K562 cells loaded with eicosapentenoic acid (EPA), a readily oxidized fatty acid, whereas Fe(PIH)(2) did not. The lipophilic antioxidant, vitamin E, completely prevented both the toxicity and lipid peroxidation caused by Fe(PBH)(2) in EPA-loaded cells, indicating a causal relationship between oxidative stress and toxicity. PBH also caused concomitant lipid peroxidation and toxicity in EPA-loaded cells, both of which were reversed as its concentration increased. In contrast, PIH was inactive, while SIH was equally toxic toward control and EPA-loaded cells, without causing lipid peroxidation, indicating a much smaller contribution of oxidative stress to the mechanism of toxicity of these analogs. In summary, PIH analogs and their Fe(3+) complexes are redox active in the intracellular environment. The contribution of oxidative stress to the overall mechanism of toxicity varies across the series.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 18 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 4 22%
Researcher 4 22%
Student > Bachelor 3 17%
Student > Ph. D. Student 2 11%
Professor > Associate Professor 2 11%
Other 0 0%
Unknown 3 17%
Readers by discipline Count As %
Chemistry 7 39%
Biochemistry, Genetics and Molecular Biology 2 11%
Pharmacology, Toxicology and Pharmaceutical Science 2 11%
Medicine and Dentistry 1 6%
Agricultural and Biological Sciences 1 6%
Other 0 0%
Unknown 5 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 March 2017.
All research outputs
#8,535,472
of 25,374,647 outputs
Outputs from Molecular Cell Biology Research Communications
#1,678
of 6,225 outputs
Outputs of similar age
#36,570
of 143,821 outputs
Outputs of similar age from Molecular Cell Biology Research Communications
#13
of 34 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 6,225 research outputs from this source. They receive a mean Attention Score of 4.1. This one is in the 18th percentile – i.e., 18% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 143,821 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 34 others from the same source and published within six weeks on either side of this one. This one is in the 2nd percentile – i.e., 2% of its contemporaries scored the same or lower than it.