↓ Skip to main content

Nuclear protein kinases

Overview of attention for article published in Molecular and Cellular Biochemistry, March 1984
Altmetric Badge

Mentioned by

wikipedia
2 Wikipedia pages

Citations

dimensions_citation
69 Dimensions

Readers on

mendeley
3 Mendeley
Title
Nuclear protein kinases
Published in
Molecular and Cellular Biochemistry, March 1984
DOI 10.1007/bf00231306
Pubmed ID
Authors

Harry R. Matthews, Verena D. Huebner

Abstract

Nuclear protein kinases include enzymes that transfer the gamma-phosphate of ATP to serine, threonine, lysine or histidine in proteins. Nuclear kinases with a preference for basic proteins are known as histone kinases; those preferring acidic protein substrates are casein kinases. Histone kinases include both cyclic AMP-independent protein kinases and cyclic AMP-dependent protein kinases. The best-characterized cyclic AMP-independent nuclear protein kinase is associated with cell proliferation and is activated (or transported to the nucleus) in G2 phase of the cell cycle. It phosphorylates specific serine and threonine residues in the non globular domains of histone H1 and appears to promote chromosome condensation. The cyclic AMP-dependent protein kinase has unknown nuclear function(s), although it may be translocated from cytoplasm to nucleus in response to specific hormonal stimuli which are also associated with changes in transcriptional activity. There is a massive peak of nuclear cyclic AMP-dependent protein kinase activity in G2 phase of the cell cycle. Nuclear casein kinases are apparently very heterogeneous. Two of these enzymes have been purified to homogeneity. They phosphorylate non-histone chromosomal proteins, including RNA polymerase and ornithine decarboxylase. Phosphorylated ornithine decarboxylase is inactive enzymatically but, in Physarum, it binds to the rDNA minichromosome and stimulates rRNA transcription. Kinases forming phosphoramidate bonds occur in a variety of rat tissues and form phosphohistide in histone H4 and phospholysine in histone H1.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 3 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 3 100%

Demographic breakdown

Readers by professional status Count As %
Professor 1 33%
Researcher 1 33%
Unknown 1 33%
Readers by discipline Count As %
Agricultural and Biological Sciences 2 67%
Unknown 1 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 May 2019.
All research outputs
#8,535,472
of 25,374,917 outputs
Outputs from Molecular and Cellular Biochemistry
#481
of 2,447 outputs
Outputs of similar age
#2,342
of 8,670 outputs
Outputs of similar age from Molecular and Cellular Biochemistry
#2
of 5 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,447 research outputs from this source. They receive a mean Attention Score of 4.2. This one has gotten more attention than average, scoring higher than 51% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 8,670 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 8th percentile – i.e., 8% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 5 others from the same source and published within six weeks on either side of this one. This one has scored higher than 3 of them.