↓ Skip to main content

Are phloem-derived amino acids the origin of the elevated malate concentration in the xylem sap following mineral N starvation in soybean?

Overview of attention for article published in Planta, May 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
15 Mendeley
Title
Are phloem-derived amino acids the origin of the elevated malate concentration in the xylem sap following mineral N starvation in soybean?
Published in
Planta, May 2018
DOI 10.1007/s00425-018-2914-x
Pubmed ID
Authors

Simone C. Vitor, Luciano do Amarante, Ladaslav Sodek

Abstract

A substantial increase in malate in the xylem sap of soybean subjected to mineral N starvation originates mainly from aspartate, a prominent amino acid of the phloem. A substantial increase in xylem malate was found when non-nodulated soybean plants were transferred to a N-free medium. Nodulated plants growing in the absence of mineral N and, therefore, dependent on symbiotic N2 fixation also contained elevated concentrations of malate in the xylem sap. When either nitrate or ammonium was supplied, malate concentrations in the xylem sap were low, both for nodulated and non-nodulated plants. Evidence was obtained that the elevated malate concentration of the xylem was derived from amino acids supplied by the phloem. Aspartate was a prominent component of the phloem sap amino acids and, therefore, a potential source of malate. Supplying the roots of intact plants with 13C-aspartate revealed that malate of the xylem sap was readily labelled under N starvation. A hypothetical scheme is proposed whereby aspartate supplied by the phloem is metabolised in the roots and the products of this metabolism cycled back to the shoot. Under N starvation, aspartate metabolism is diverted from asparagine synthesis to supply N for the synthesis of other amino acids via transaminase activity. The by-product of aspartate transaminase activity, oxaloacetate, is transformed to malate and its export accounts for much of the elevated concentration of malate found in the xylem sap. This mechanism represents a new additional role for malate during mineral N starvation of soybean, beyond that of charge balance.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 15 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 15 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 27%
Researcher 4 27%
Professor > Associate Professor 4 27%
Student > Master 1 7%
Other 1 7%
Other 2 13%
Readers by discipline Count As %
Agricultural and Biological Sciences 7 47%
Biochemistry, Genetics and Molecular Biology 4 27%
Unknown 4 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 May 2018.
All research outputs
#20,493,046
of 23,056,273 outputs
Outputs from Planta
#2,393
of 2,738 outputs
Outputs of similar age
#288,018
of 327,737 outputs
Outputs of similar age from Planta
#30
of 39 outputs
Altmetric has tracked 23,056,273 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,738 research outputs from this source. They receive a mean Attention Score of 3.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,737 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 39 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.