↓ Skip to main content

Volatile and Contact Chemical Cues Associated with Host and Mate Recognition Behavior of Sphenophorus venatus and Sphenophorus parvulus (Coleoptera: Dryophthoridae)

Overview of attention for article published in Journal of Chemical Ecology, May 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (72nd percentile)
  • Above-average Attention Score compared to outputs of the same age and source (61st percentile)

Mentioned by

twitter
9 X users

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
22 Mendeley
Title
Volatile and Contact Chemical Cues Associated with Host and Mate Recognition Behavior of Sphenophorus venatus and Sphenophorus parvulus (Coleoptera: Dryophthoridae)
Published in
Journal of Chemical Ecology, May 2018
DOI 10.1007/s10886-018-0967-8
Pubmed ID
Authors

Alexandra G. Duffy, Gabriel P. Hughes, Matthew D. Ginzel, Douglas S. Richmond

Abstract

Beetles in the genus Sphenophorus Schönherr, or billbugs, potentially utilize both volatile and non-volatile behavior-modifying chemical signals. These insects are widely distributed across North America, often occurring in multi-species assemblages in grasses. However, details about their host- and mate-finding behavior are poorly understood. This study tested the hypothesis that volatile organic compounds from host-plants and conspecifics direct the dispersal behavior of hunting billbug S. venatus Say. Further, we characterized the cuticular hydrocarbon profiles of two widespread pest species, S. venatus and bluegrass billbug S. parvulus Gyllenhaal, to assess the potential role of contact pheromones in mate-recognition. In Y-tube olfactometer bioassays, S. venatus males were attracted to a combination of conspecifics and Cynodon dactylon host-plant material, as well as C. dactylon plant material alone. S. venatus females were attracted to a combination of male conspecifics and host-plants but were also attracted to male conspecifics alone. Field evaluation of a putative male-produced aggregation pheromone, 2-methyl-4-octanol, identified from two congeners, S. levis Vaurie and S. incurrens Gyllenhaal, did not support the hypothesis that S. venatus and S. parvulus were also attracted to this compound. Gas chromatography-mass spectrometry analysis of S. venatus and S. parvulus whole-body cuticular extracts indicated a series of hydrocarbons with qualitative and quantitative interspecific variation in addition to intraspecific quantitative variation between males and females. This study provides the first evidence that S. venatus orients toward host- and insect-derived volatile organic compounds and substantiates the presence of species-specific cuticular hydrocarbons that could serve as contact pheromones for sympatric Sphenophorus species.

X Demographics

X Demographics

The data shown below were collected from the profiles of 9 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 22 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 6 27%
Student > Ph. D. Student 5 23%
Student > Bachelor 2 9%
Unspecified 2 9%
Student > Doctoral Student 1 5%
Other 1 5%
Unknown 5 23%
Readers by discipline Count As %
Agricultural and Biological Sciences 10 45%
Environmental Science 3 14%
Unspecified 2 9%
Nursing and Health Professions 1 5%
Biochemistry, Genetics and Molecular Biology 1 5%
Other 0 0%
Unknown 5 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 March 2019.
All research outputs
#4,566,330
of 23,056,273 outputs
Outputs from Journal of Chemical Ecology
#287
of 2,054 outputs
Outputs of similar age
#88,518
of 328,263 outputs
Outputs of similar age from Journal of Chemical Ecology
#8
of 21 outputs
Altmetric has tracked 23,056,273 research outputs across all sources so far. Compared to these this one has done well and is in the 80th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,054 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.1. This one has done well, scoring higher than 85% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,263 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.
We're also able to compare this research output to 21 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 61% of its contemporaries.