↓ Skip to main content

The potential importance of myeloid-derived suppressor cells (MDSCs) in the pathogenesis of Alzheimer’s disease

Overview of attention for article published in Cellular and Molecular Life Sciences, May 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (79th percentile)
  • Good Attention Score compared to outputs of the same age and source (79th percentile)

Mentioned by

news
1 news outlet
twitter
2 X users

Citations

dimensions_citation
24 Dimensions

Readers on

mendeley
49 Mendeley
Title
The potential importance of myeloid-derived suppressor cells (MDSCs) in the pathogenesis of Alzheimer’s disease
Published in
Cellular and Molecular Life Sciences, May 2018
DOI 10.1007/s00018-018-2844-6
Pubmed ID
Authors

Antero Salminen, Kai Kaarniranta, Anu Kauppinen

Abstract

The exact cause of Alzheimer's disease (AD) is still unknown, but the deposition of amyloid-β (Aβ) plaques and chronic inflammation indicates that immune disturbances are involved in AD pathogenesis. Recent genetic studies have revealed that many candidate genes are expressed in both microglia and myeloid cells which infiltrate into the AD brains. Invading myeloid cells controls the functions of resident microglia in pathological conditions, such as AD pathology. AD is a neurologic disease with inflammatory component where the immune system is not able to eliminate the perpetrator, while, concurrently, it should prevent neuronal injuries induced by inflammation. Recent studies have indicated that AD brains are an immunosuppressive microenvironment, e.g., microglial cells are hyporesponsive to Aβ deposits and anti-inflammatory cytokines enhance Aβ deposition. Immunosuppression is a common element in pathological disorders involving chronic inflammation. Studies on cancer-associated inflammation have demonstrated that myeloid-derived suppressor cells (MDSCs) have a crucial role in the immune escape of tumor cells. Immunosuppression is not limited to tumors, since MDSCs can be recruited into chronically inflamed tissues where inflammatory mediators enhance the proliferation and activation of MDSCs. AD brains express a range of chemokines and cytokines which could recruit and expand MDSCs in inflamed AD brains and thus generate an immunosuppressive microenvironment. Several neuroinflammatory disorders, e.g., the early phase of AD pathology, have been associated with an increase in the level of circulating MDSCs. We will elucidate the immunosuppressive armament of MDSCs and present evidences in support of the crucial role of MDSCs in the pathogenesis of AD.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 49 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 49 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 29%
Student > Bachelor 6 12%
Student > Master 5 10%
Professor > Associate Professor 4 8%
Professor 2 4%
Other 4 8%
Unknown 14 29%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 13 27%
Neuroscience 6 12%
Agricultural and Biological Sciences 5 10%
Medicine and Dentistry 2 4%
Pharmacology, Toxicology and Pharmaceutical Science 1 2%
Other 5 10%
Unknown 17 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 May 2018.
All research outputs
#3,260,920
of 23,794,258 outputs
Outputs from Cellular and Molecular Life Sciences
#492
of 4,151 outputs
Outputs of similar age
#65,775
of 330,919 outputs
Outputs of similar age from Cellular and Molecular Life Sciences
#9
of 44 outputs
Altmetric has tracked 23,794,258 research outputs across all sources so far. Compared to these this one has done well and is in the 86th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 4,151 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.0. This one has done well, scoring higher than 88% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,919 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 79% of its contemporaries.
We're also able to compare this research output to 44 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 79% of its contemporaries.