↓ Skip to main content

Animal board invited review: genetic possibilities to reduce enteric methane emissions from ruminants

Overview of attention for article published in animal, June 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (93rd percentile)
  • High Attention Score compared to outputs of the same age and source (95th percentile)

Mentioned by

policy
4 policy sources
twitter
9 X users
patent
3 patents

Citations

dimensions_citation
111 Dimensions

Readers on

mendeley
227 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Animal board invited review: genetic possibilities to reduce enteric methane emissions from ruminants
Published in
animal, June 2015
DOI 10.1017/s1751731115000968
Pubmed ID
Authors

N.K. Pickering, V.H. Oddy, J. Basarab, K. Cammack, B. Hayes, R.S. Hegarty, J. Lassen, J.C. McEwan, S. Miller, C.S. Pinares-Patiño, Y. de Haas

Abstract

Measuring and mitigating methane (CH4) emissions from livestock is of increasing importance for the environment and for policy making. Potentially, the most sustainable way of reducing enteric CH4 emission from ruminants is through the estimation of genomic breeding values to facilitate genetic selection. There is potential for adopting genetic selection and in the future genomic selection, for reduced CH4 emissions from ruminants. From this review it has been observed that both CH4 emissions and production (g/day) are a heritable and repeatable trait. CH4 emissions are strongly related to feed intake both in the short term (minutes to several hours) and over the medium term (days). When measured over the medium term, CH4 yield (MY, g CH4/kg dry matter intake) is a heritable and repeatable trait albeit with less genetic variation than for CH4 emissions. CH4 emissions of individual animals are moderately repeatable across diets, and across feeding levels, when measured in respiration chambers. Repeatability is lower when short term measurements are used, possibly due to variation in time and amount of feed ingested prior to the measurement. However, while repeated measurements add value; it is preferable the measures be separated by at least 3 to 14 days. This temporal separation of measurements needs to be investigated further. Given the above issue can be resolved, short term (over minutes to hours) measurements of CH4 emissions show promise, especially on systems where animals are fed ad libitum and frequency of meals is high. However, we believe that for short-term measurements to be useful for genetic evaluation, a number (between 3 and 20) of measurements will be required over an extended period of time (weeks to months). There are opportunities for using short-term measurements in standardised feeding situations such as breath 'sniffers' attached to milking parlours or total mixed ration feeding bins, to measure CH4. Genomic selection has the potential to reduce both CH4 emissions and MY, but measurements on thousands of individuals will be required. This includes the need for combined resources across countries in an international effort, emphasising the need to acknowledge the impact of animal and production systems on measurement of the CH4 trait during design of experiments.

X Demographics

X Demographics

The data shown below were collected from the profiles of 9 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 227 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 2 <1%
Finland 1 <1%
Australia 1 <1%
United States 1 <1%
Poland 1 <1%
Unknown 221 97%

Demographic breakdown

Readers by professional status Count As %
Researcher 44 19%
Student > Master 36 16%
Student > Ph. D. Student 32 14%
Student > Bachelor 10 4%
Student > Doctoral Student 9 4%
Other 31 14%
Unknown 65 29%
Readers by discipline Count As %
Agricultural and Biological Sciences 100 44%
Environmental Science 17 7%
Veterinary Science and Veterinary Medicine 14 6%
Engineering 5 2%
Biochemistry, Genetics and Molecular Biology 4 2%
Other 16 7%
Unknown 71 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 27. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 November 2023.
All research outputs
#1,430,473
of 25,576,801 outputs
Outputs from animal
#75
of 1,848 outputs
Outputs of similar age
#17,472
of 280,344 outputs
Outputs of similar age from animal
#1
of 21 outputs
Altmetric has tracked 25,576,801 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 94th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,848 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.0. This one has done particularly well, scoring higher than 95% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,344 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 93% of its contemporaries.
We're also able to compare this research output to 21 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 95% of its contemporaries.