↓ Skip to main content

Biomechanics Associated with Patellofemoral Pain and ACL Injuries in Sports

Overview of attention for article published in Sports Medicine, July 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (88th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

blogs
1 blog
twitter
9 X users
facebook
2 Facebook pages

Citations

dimensions_citation
78 Dimensions

Readers on

mendeley
559 Mendeley
Title
Biomechanics Associated with Patellofemoral Pain and ACL Injuries in Sports
Published in
Sports Medicine, July 2015
DOI 10.1007/s40279-015-0353-4
Pubmed ID
Authors

Kaitlyn Weiss, Chris Whatman

Abstract

Knee injuries are prevalent among a variety of competitive sports and can impact an athlete's ability to continue to participate in their sport or, in the worst case, end an athlete's career. The aim was to evaluate biomechanics associated with both patellofemoral pain syndrome (PFPS) and anterior cruciate ligament (ACL) injuries (in sports involving landing, change in direction, or rapid deceleration) across the three time points frequently reported in the literature: pre-injury, at the time of injury, and following injury. A search of the literature was conducted for research evaluating biomechanics associated with ACL injury and PFPS. The Web of Science, SPORTDiscus, EBSCO, PubMed, and CINAHL databases, to March 2015, were searched, and journal articles focused on ACL injuries and PFPS in sports that met the inclusion criteria were reviewed. The search methodology was created with the intent of extracting case-control, case, and cohort studies of knee injury in athletic populations. The search strategy was restricted to only full-text articles published in English. These articles were included in the review if they met all of the required selection criteria. The following inclusion criteria were used: (1) The study must report lower extremity biomechanics in one of the following settings: (a) a comparison of currently injured and uninjured participants, (b) a prospective study evaluating risk factors for injury, or (c) a study reporting on the injury event itself. (2) The study must include only currently active participants who were similar at baseline (i.e. healthy, high school level basketball players currently in-season) and include biomechanical analysis of either landing, change in direction, or rapid deceleration. (3) The study must include currently injured participants. The studies were graded on the basis of quality, which served as an indication of risk of bias. An adapted version of the 'Strengthening the Reporting of Observational Studies in Epidemiology' (STROBE) guidelines was used to rate observational research. Fifteen journal articles focusing on ACL injuries and PFPS in sports met the inclusion criteria. These included three associated with both ACL injuries and PFPS across multiple time points. There was limited evidence for an association between ankle biomechanics and knee injury, with only one ACL injury study identifying decreased plantar flexion in association with injury. Only prospective studies can determine biomechanical risk factors associated with ACL injuries and PFPS. Case studies and case-control studies do not allow for the determination of risk factors associated with both ACL injuries and PFPS as there is no certainty regarding the presence of the observed biomechanics prior to the onset of injury. Further, each study design has its own set of limitations. Lastly, the majority of the studies included in this review had adult female participants. By evaluating several different study designs looking at knee injuries during high-risk manoeuvres, we were able to obtain a holistic perspective of biomechanics associated with PFPS and ACL injuries. Looking at different biomechanical research approaches allowed us to assess not only the mechanism of injury, but also to look for commonalities in biomechanics (in particular, altered frontal plane mechanics at the knee and altered sagittal plane mechanics at the knee and hip) between injured and uninjured participants pre-injury, at the time of injury, and following injury, to better understand potential causes of PFPS and ACL injury. Development of injury prevention programmes should focus on correcting these mechanics observed across the three time points during high-risk manoeuvres as this may help decrease the prevalence of ACL injury and PFPS. Programmes focusing not only on neuromuscular training, but also skill-specific training focused on correcting mechanics during these high-risk manoeuvres may be of greatest benefit regarding prevention. Future research should consider the impact of cumulative loading on knee injury risk. Additionally, better techniques for assessing mechanics in-game are needed in order to facilitate injury prevention and screening strategies.

X Demographics

X Demographics

The data shown below were collected from the profiles of 9 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 559 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 <1%
Spain 2 <1%
South Africa 1 <1%
Netherlands 1 <1%
Czechia 1 <1%
Unknown 552 99%

Demographic breakdown

Readers by professional status Count As %
Student > Master 122 22%
Student > Bachelor 98 18%
Student > Ph. D. Student 48 9%
Researcher 31 6%
Other 24 4%
Other 91 16%
Unknown 145 26%
Readers by discipline Count As %
Sports and Recreations 130 23%
Medicine and Dentistry 107 19%
Nursing and Health Professions 89 16%
Engineering 18 3%
Agricultural and Biological Sciences 10 2%
Other 38 7%
Unknown 167 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 14. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 June 2023.
All research outputs
#2,485,975
of 25,049,929 outputs
Outputs from Sports Medicine
#1,537
of 2,885 outputs
Outputs of similar age
#30,355
of 268,913 outputs
Outputs of similar age from Sports Medicine
#24
of 35 outputs
Altmetric has tracked 25,049,929 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 90th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,885 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 55.1. This one is in the 46th percentile – i.e., 46% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 268,913 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 88% of its contemporaries.
We're also able to compare this research output to 35 others from the same source and published within six weeks on either side of this one. This one is in the 34th percentile – i.e., 34% of its contemporaries scored the same or lower than it.