↓ Skip to main content

Assembling of Holotrichia parallela (dark black chafer) midgut tissue transcriptome and identification of midgut proteins that bind to Cry8Ea toxin from Bacillus thuringiensis

Overview of attention for article published in Applied Microbiology and Biotechnology, July 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
27 Mendeley
Title
Assembling of Holotrichia parallela (dark black chafer) midgut tissue transcriptome and identification of midgut proteins that bind to Cry8Ea toxin from Bacillus thuringiensis
Published in
Applied Microbiology and Biotechnology, July 2015
DOI 10.1007/s00253-015-6755-2
Pubmed ID
Authors

Changlong Shu, Shuqian Tan, Jiao Yin, Mario Soberón, Alejandra Bravo, Chunqing Liu, Lili Geng, Fuping Song, Kebin Li, Jie Zhang

Abstract

Holotrichia parallela is one of the most severe crop pests in China, affecting peanut, soybean, and sweet potato crops. Previous work showed that Cry8Ea toxin is highly effective against this insect. In order to identify Cry8Ea-binding proteins in the midgut cells of H. parallela larvae, we assembled a midgut tissue transcriptome by high-throughput sequencing and used this assembled transcriptome to identify Cry8Ea-binding proteins by liquid chromatography-tandem mass spectrometry (LC-MS/MS). First, we obtained de novo sequences of cDNAs from midgut tissue of H. parallela larvae and used available cDNA data in the GenBank. In a parallel assay, we obtained 11 Cry8Ea-binding proteins by pull-down assays performed with midgut brush border membrane vesicles. Peptide sequences from these proteins were matched to the H. parallela newly assembled midgut transcriptome, and 10 proteins were identified. Some of the proteins were shown to be intracellular proteins forming part of the cell cytoskeleton and/or vesicle transport such as actin, myosin, clathrin, dynein, and tubulin among others. In addition, an apolipophorin, which is a protein involved in lipid metabolism, and a novel membrane-bound alanyl aminopeptidase were identified. Our results suggest that Cry8Ea-binding proteins could be different from those characterized for Cry1A toxins in lepidopteran insects.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 27 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 27 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 22%
Researcher 4 15%
Student > Doctoral Student 3 11%
Student > Master 3 11%
Professor 2 7%
Other 2 7%
Unknown 7 26%
Readers by discipline Count As %
Agricultural and Biological Sciences 9 33%
Biochemistry, Genetics and Molecular Biology 6 22%
Environmental Science 1 4%
Immunology and Microbiology 1 4%
Medicine and Dentistry 1 4%
Other 1 4%
Unknown 8 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 May 2016.
All research outputs
#19,611,252
of 24,119,703 outputs
Outputs from Applied Microbiology and Biotechnology
#6,478
of 8,034 outputs
Outputs of similar age
#194,563
of 267,593 outputs
Outputs of similar age from Applied Microbiology and Biotechnology
#97
of 160 outputs
Altmetric has tracked 24,119,703 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 8,034 research outputs from this source. They receive a mean Attention Score of 4.3. This one is in the 12th percentile – i.e., 12% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 267,593 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 160 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.