↓ Skip to main content

Rapid recognition of volatile organic compounds with colorimetric sensor arrays for lung cancer screening

Overview of attention for article published in Analytical & Bioanalytical Chemistry, April 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
41 Dimensions

Readers on

mendeley
66 Mendeley
Title
Rapid recognition of volatile organic compounds with colorimetric sensor arrays for lung cancer screening
Published in
Analytical & Bioanalytical Chemistry, April 2018
DOI 10.1007/s00216-018-0948-3
Pubmed ID
Authors

Xianhua Zhong, Dan Li, Wei Du, Mengqiu Yan, You Wang, Danqun Huo, Changjun Hou

Abstract

Volatile organic compounds (VOCs) in breath can be used as biomarkers to identify early stages of lung cancer. Herein, we report a disposable colorimetric array that has been constructed from diverse chemo-responsive colorants. Distinguishable difference maps were plotted within 4 min for specifically targeted VOCs. Through the consideration of various chemical interactions with VOCs, the arrays successfully discriminate between 20 different volatile organic compounds in breath that are related to lung cancer. VOCs were identified either with the visualized difference maps or through pattern recognition with an accuracy of at least 90%. No uncertainties or errors were observed in the hierarchical cluster analysis (HCA). Finally, good reproducibility and stability of the array was achieved against changes in humidity. Generally, this work provides fundamental support for construction of simple and rapid VOC sensors. More importantly, this approach provides a hypothesis-free array method for breath testing via VOC profiling. Therefore, this small, rapid, non-invasive, inexpensive, and visualized sensor array is a powerful and promising tool for early screening of lung cancer. Graphical abstract A disposable colorimetric array has been developed with broadly chemo-responsive dyes to incorporate various chemical interactions, through which the arrays successfully discriminate 20 VOCs that are related to lung cancer via difference maps alone or chemometrics within 4 min. The hydrophobic porous matrix provides good stability against changes in humidity.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 66 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 66 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 17%
Student > Master 8 12%
Researcher 8 12%
Student > Bachelor 6 9%
Other 4 6%
Other 5 8%
Unknown 24 36%
Readers by discipline Count As %
Engineering 9 14%
Chemistry 9 14%
Medicine and Dentistry 6 9%
Biochemistry, Genetics and Molecular Biology 5 8%
Chemical Engineering 3 5%
Other 5 8%
Unknown 29 44%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 May 2018.
All research outputs
#19,951,180
of 25,382,440 outputs
Outputs from Analytical & Bioanalytical Chemistry
#6,061
of 9,619 outputs
Outputs of similar age
#251,264
of 342,076 outputs
Outputs of similar age from Analytical & Bioanalytical Chemistry
#91
of 177 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 9,619 research outputs from this source. They receive a mean Attention Score of 3.1. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 342,076 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 21st percentile – i.e., 21% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 177 others from the same source and published within six weeks on either side of this one. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.