↓ Skip to main content

MONALISA for stochastic simulations of Petri net models of biochemical systems

Overview of attention for article published in BMC Bioinformatics, July 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
27 Mendeley
Title
MONALISA for stochastic simulations of Petri net models of biochemical systems
Published in
BMC Bioinformatics, July 2015
DOI 10.1186/s12859-015-0596-y
Pubmed ID
Authors

Pavel Balazki, Klaus Lindauer, Jens Einloft, Jörg Ackermann, Ina Koch

Abstract

The concept of Petri nets (PN) is widely used in systems biology and allows modeling of complex biochemical systems like metabolic systems, signal transduction pathways, and gene expression networks. In particular, PN allows the topological analysis based on structural properties, which is important and useful when quantitative (kinetic) data are incomplete or unknown. Knowing the kinetic parameters, the simulation of time evolution of such models can help to study the dynamic behavior of the underlying system. If the number of involved entities (molecules) is low, a stochastic simulation should be preferred against the classical deterministic approach of solving ordinary differential equations. The Stochastic Simulation Algorithm (SSA) is a common method for such simulations. The combination of the qualitative and semi-quantitative PN modeling and stochastic analysis techniques provides a valuable approach in the field of systems biology. Here, we describe the implementation of stochastic analysis in a PN environment. We extended MONALISA - an open-source software for creation, visualization and analysis of PN - by several stochastic simulation methods. The simulation module offers four simulation modes, among them the stochastic mode with constant firing rates and Gillespie's algorithm as exact and approximate versions. The simulator is operated by a user-friendly graphical interface and accepts input data such as concentrations and reaction rate constants that are common parameters in the biological context. The key features of the simulation module are visualization of simulation, interactive plotting, export of results into a text file, mathematical expressions for describing simulation parameters, and up to 500 parallel simulations of the same parameter sets. To illustrate the method we discuss a model for insulin receptor recycling as case study. We present a software that combines the modeling power of Petri nets with stochastic simulation of dynamic processes in a user-friendly environment supported by an intuitive graphical interface. The program offers a valuable alternative to modeling, using ordinary differential equations, especially when simulating single-cell experiments with low molecule counts. The ability to use mathematical expressions provides an additional flexibility in describing the simulation parameters. The open-source distribution allows further extensions by third-party developers. The software is cross-platform and is licensed under the Artistic License 2.0.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 27 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Chile 1 4%
Unknown 26 96%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 5 19%
Student > Ph. D. Student 5 19%
Researcher 5 19%
Professor 2 7%
Student > Master 2 7%
Other 3 11%
Unknown 5 19%
Readers by discipline Count As %
Computer Science 6 22%
Biochemistry, Genetics and Molecular Biology 4 15%
Agricultural and Biological Sciences 3 11%
Engineering 3 11%
Medicine and Dentistry 2 7%
Other 4 15%
Unknown 5 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 February 2016.
All research outputs
#15,339,713
of 22,816,807 outputs
Outputs from BMC Bioinformatics
#5,374
of 7,284 outputs
Outputs of similar age
#153,968
of 262,950 outputs
Outputs of similar age from BMC Bioinformatics
#82
of 112 outputs
Altmetric has tracked 22,816,807 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,284 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one is in the 18th percentile – i.e., 18% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 262,950 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 112 others from the same source and published within six weeks on either side of this one. This one is in the 19th percentile – i.e., 19% of its contemporaries scored the same or lower than it.