↓ Skip to main content

Airway smooth muscle relaxation is impaired in mice lacking the p47phox subunit of NAD(P)H oxidase

Overview of attention for article published in American Journal of Physiology: Lung Cellular & Molecular Physiology, November 2007
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (71st percentile)
  • Good Attention Score compared to outputs of the same age and source (72nd percentile)

Mentioned by

blogs
1 blog

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
12 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Airway smooth muscle relaxation is impaired in mice lacking the p47phox subunit of NAD(P)H oxidase
Published in
American Journal of Physiology: Lung Cellular & Molecular Physiology, November 2007
DOI 10.1152/ajplung.00384.2007
Pubmed ID
Authors

Pasquale Chitano, Lu Wang, Stanley N. Mason, Richard L. Auten, Erin N. Potts, William M. Foster, Anne Sturrock, Thomas P. Kennedy, John R. Hoidal, Thomas M. Murphy

Abstract

NAD(P)H oxidase is one of the critical enzymes mediating cellular production of reactive oxygen species and has a central role in airway smooth muscle (ASM) cell proliferation. Since reactive oxygen species also affect ASM contractile response, we hypothesized a regulatory role of NAD(P)H oxidase in ASM contractility. We therefore studied ASM function in wild-type mice (C57BL/6J) and mice deficient in a component (p47phox) of NAD(P)H oxidase. In histological sections of the trachea, we found that the area occupied by ASM was 17% more in p47(phox-/-) than in wild-type mice. After correcting for the difference in ASM content, we found that force generation did not vary between the two genotypes. Similarly, their ASM shortening velocity, maximal power, and sensitivity to acetylcholine, as well as airway responsiveness to methacholine in vivo, were not significantly different. The main finding of this study was a significantly reduced ASM relaxation in p47phox-/- compared with wild-type mice both during the stimulus and after the end of stimulation. The tension relaxation attained at the 20th second of electric field stimulation was, respectively, 17.6 +/- 2.4 and 9.2 +/- 2.3% in null and wild-type mice (P <0.01 by t-test). Similar significant differences were found in the rate of tension relaxation and the time required to reduce tension by one-half. Our data suggest that NAD(P)H oxidase may have a role in the structural arrangement and mechanical properties of the airway tissue. Most importantly, we report the first evidence that the p47phox subunit of NAD(P)H oxidase plays a role in ASM relaxation.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 12 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 12 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 25%
Student > Bachelor 3 25%
Professor 1 8%
Researcher 1 8%
Unknown 4 33%
Readers by discipline Count As %
Agricultural and Biological Sciences 4 33%
Medicine and Dentistry 2 17%
Nursing and Health Professions 1 8%
Biochemistry, Genetics and Molecular Biology 1 8%
Unknown 4 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 July 2015.
All research outputs
#6,736,183
of 25,373,627 outputs
Outputs from American Journal of Physiology: Lung Cellular & Molecular Physiology
#631
of 2,531 outputs
Outputs of similar age
#25,551
of 90,593 outputs
Outputs of similar age from American Journal of Physiology: Lung Cellular & Molecular Physiology
#3
of 11 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one has received more attention than most of these and is in the 73rd percentile.
So far Altmetric has tracked 2,531 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.8. This one has gotten more attention than average, scoring higher than 74% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 90,593 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.
We're also able to compare this research output to 11 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.