↓ Skip to main content

Determinants of Soil Bacterial and Fungal Community Composition Toward Carbon-Use Efficiency Across Primary and Secondary Forests in a Costa Rican Conservation Area

Overview of attention for article published in Microbial Ecology, June 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (74th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (64th percentile)

Mentioned by

twitter
14 X users

Citations

dimensions_citation
39 Dimensions

Readers on

mendeley
64 Mendeley
Title
Determinants of Soil Bacterial and Fungal Community Composition Toward Carbon-Use Efficiency Across Primary and Secondary Forests in a Costa Rican Conservation Area
Published in
Microbial Ecology, June 2018
DOI 10.1007/s00248-018-1206-0
Pubmed ID
Authors

Katie M. McGee, William D. Eaton, Shadi Shokralla, Mehrdad Hajibabaei

Abstract

Tropical secondary forests currently represent over half of the world's remaining tropical forests and are critical candidates for maintaining global biodiversity and enhancing potential carbon-use efficiency (CUE) and, thus, carbon sequestration. However, these ecosystems can exhibit multiple successional pathways, which have hindered our understanding of the soil microbial drivers that facilitate improved CUE. To begin to address this, we examined soil % C; % N; C:N ratio; soil microbial biomass C (Cmic); NO3-; NH4+; pH; % moisture; % sand, silt, and clay; and elevation, along with soil bacterial and fungal community composition, and determined which soil abiotic properties structure the soil Cmic and the soil bacterial and fungal communities across a primary forest, 33-year-old secondary forest, and 22-year-old young secondary in the Northern Zone of Costa Rica. We provide evidence that soil microbial communities were mostly distinct across the habitat types and that these habitats appear to have affected the soil ectomycorrhizal fungi and the soil microbial groups associated with the degradation of complex carbon compounds. We found that soil Cmic levels increased along the management gradient from young, to old secondary, to primary forest. In addition, the changes in soil Cmic and soil fungal community structure were significantly related to levels of soil NO3-. Our analyses showed that even after 33 years of natural forest regrowth, the clearing of tropical forests can have persistent effects on soil microbial communities and that it may take a longer time than we realized for secondary forests to develop carbon-utilization efficiencies similar to that of a primary forest. Our results also indicated that forms of inorganic N may be an important factor in structuring soil Cmic and the soil microbial communities, leading to improved CUE in regenerating secondary forests. This study is the first in the region to highlight some of the factors which appear to be structuring the soil Cmic and soil microbial communities such that they are more conducive for enhanced CUE in secondary forests.

X Demographics

X Demographics

The data shown below were collected from the profiles of 14 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 64 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 64 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 11 17%
Student > Ph. D. Student 10 16%
Researcher 8 13%
Student > Master 7 11%
Student > Doctoral Student 4 6%
Other 7 11%
Unknown 17 27%
Readers by discipline Count As %
Agricultural and Biological Sciences 22 34%
Environmental Science 14 22%
Biochemistry, Genetics and Molecular Biology 4 6%
Unspecified 1 2%
Earth and Planetary Sciences 1 2%
Other 4 6%
Unknown 18 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 June 2018.
All research outputs
#4,544,409
of 24,407,785 outputs
Outputs from Microbial Ecology
#495
of 2,143 outputs
Outputs of similar age
#83,910
of 334,729 outputs
Outputs of similar age from Microbial Ecology
#15
of 39 outputs
Altmetric has tracked 24,407,785 research outputs across all sources so far. Compared to these this one has done well and is in the 81st percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,143 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one has done well, scoring higher than 76% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 334,729 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.
We're also able to compare this research output to 39 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 64% of its contemporaries.