↓ Skip to main content

Vitamin D3 contributes to enhanced osteogenic differentiation of MSCs under oxidative stress condition via activating the endogenous antioxidant system

Overview of attention for article published in Osteoporosis International, June 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
12 Mendeley
Title
Vitamin D3 contributes to enhanced osteogenic differentiation of MSCs under oxidative stress condition via activating the endogenous antioxidant system
Published in
Osteoporosis International, June 2018
DOI 10.1007/s00198-018-4547-0
Pubmed ID
Authors

J. Zhou, F. Wang, Y. Ma, F. Wei

Abstract

The anti-oxidative effects of vitamin D3 (Vd3) on mesenchymal stem cells (MSCs) have not been studied before. The present study suggested that Vd3 could not only promote the osteogenic differentiation of MSCs under normal condition but also partly protect it from oxidative stress damage by activating the endogenous antioxidant system. Evolving evidence proved that oxidative stress caused by reactive oxygen species (ROS) overproduction might lead to bone loss. Vd3, a commonly used osteogenic induction drug, was proved to exhibit potent anti-oxidative effects on other cell types. The present study aims to investigate the protective effects of Vd3 on oxidative stress-induced dysfunctions of MSCs, as well as its underlying mechanisms. The H2O2 was used as exogenous reactive oxygen species (ROS). The influence of ROS and anti-oxidative protection of Vd3 on MSCs were analyzed too. Multi-techniques were used to assess the beneficial effects of Vd3 on MSCs under oxidative stress condition. The results demonstrated that Vd3 could significantly attenuate the H2O2-induced cell injury of MSCs via Sirt1/FoxO1 signaling pathway, and reduced the H2O2 exposure-induced intracellular oxidative stress status of MSCs. What's more, the H2O2 exposure resulted in the decreased osteogenic differentiation of MSCs, as evidenced by decreased alkaline phosphatase activity, calcium deposition level, and osteogenic differentiation gene mRNA levels, but the injury was restored via Vd3 administration. The results suggested that Vd3 could not only promote the osteogenic differentiation of osteoblastic cells under normal condition but also partly protect the cell from oxidative stress damage by activating endogenous antioxidant system. The study shed light on the new roles of Vd3 in bone modeling and remodeling regulation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 12 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 12 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 25%
Other 2 17%
Student > Doctoral Student 1 8%
Student > Ph. D. Student 1 8%
Student > Bachelor 1 8%
Other 2 17%
Unknown 2 17%
Readers by discipline Count As %
Medicine and Dentistry 5 42%
Biochemistry, Genetics and Molecular Biology 3 25%
Materials Science 1 8%
Agricultural and Biological Sciences 1 8%
Unknown 2 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 June 2018.
All research outputs
#14,130,357
of 23,085,832 outputs
Outputs from Osteoporosis International
#2,126
of 3,674 outputs
Outputs of similar age
#179,936
of 329,907 outputs
Outputs of similar age from Osteoporosis International
#33
of 58 outputs
Altmetric has tracked 23,085,832 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,674 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one is in the 41st percentile – i.e., 41% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,907 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 58 others from the same source and published within six weeks on either side of this one. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.