↓ Skip to main content

Comparing Positively and Negatively Charged Distonic Radical Ions in Phenylperoxyl Forming Reactions

Overview of attention for article published in Journal of the American Society for Mass Spectrometry, June 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (68th percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
3 Mendeley
Title
Comparing Positively and Negatively Charged Distonic Radical Ions in Phenylperoxyl Forming Reactions
Published in
Journal of the American Society for Mass Spectrometry, June 2018
DOI 10.1007/s13361-018-1988-9
Pubmed ID
Authors

Peggy E. Williams, David L. Marshall, Berwyck L. J. Poad, Venkateswara R. Narreddula, Benjamin B. Kirk, Adam J. Trevitt, Stephen J. Blanksby

Abstract

In the gas phase, arylperoxyl forming reactions play a significant role in low-temperature combustion and atmospheric processing of volatile organic compounds. We have previously demonstrated the application of charge-tagged phenyl radicals to explore the outcomes of these reactions using ion trap mass spectrometry. Here, we present a side-by-side comparison of rates and product distributions from the reaction of positively and negatively charge tagged phenyl radicals with dioxygen. The negatively charged distonic radical ions are found to react with significantly greater efficiency than their positively charged analogues. The product distributions of the anion reactions favor products of phenylperoxyl radical decomposition (e.g., phenoxyl radicals and cyclopentadienone), while the comparable fixed-charge cations yield the stabilized phenylperoxyl radical. Electronic structure calculations rationalize these differences as arising from the influence of the charged moiety on the energetics of rate-determining transition states and reaction intermediates within the phenylperoxyl reaction manifold and predict that this influence could extend to intra-molecular charge-radical separations of up to 14.5 Å. Experimental observations of reactions of the novel 4-(1-carboxylatoadamantyl)phenyl radical anion confirm that the influence of the charge on both rate and product distribution can be modulated by increasing the rigidly imposed separation between charge and radical sites. These findings provide a generalizable framework for predicting the influence of charged groups on polarizable radicals in gas phase distonic radical ions. Graphical Abstract.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 3 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 3 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 1 33%
Professor > Associate Professor 1 33%
Unknown 1 33%
Readers by discipline Count As %
Business, Management and Accounting 1 33%
Chemistry 1 33%
Unknown 1 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 August 2018.
All research outputs
#14,789,745
of 25,382,440 outputs
Outputs from Journal of the American Society for Mass Spectrometry
#2,204
of 3,835 outputs
Outputs of similar age
#174,471
of 342,821 outputs
Outputs of similar age from Journal of the American Society for Mass Spectrometry
#23
of 75 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,835 research outputs from this source. They receive a mean Attention Score of 3.8. This one is in the 42nd percentile – i.e., 42% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 342,821 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 75 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 68% of its contemporaries.