↓ Skip to main content

Molecular mechanisms underlying uremic toxin-related systemic disorders in chronic kidney disease: focused on β2-microglobulin-related amyloidosis and indoxyl sulfate-induced atherosclerosis—Oshima…

Overview of attention for article published in Clinical and Experimental Nephrology, June 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
35 Mendeley
Title
Molecular mechanisms underlying uremic toxin-related systemic disorders in chronic kidney disease: focused on β2-microglobulin-related amyloidosis and indoxyl sulfate-induced atherosclerosis—Oshima Award Address 2016
Published in
Clinical and Experimental Nephrology, June 2018
DOI 10.1007/s10157-018-1588-9
Pubmed ID
Authors

Suguru Yamamoto

Abstract

Uremic toxins are linked to chronic kidney disease (CKD)-related systemic diseases. β2-Microglobulin (β2-m), a water-soluble, middle-sized molecule, is associated with mortality and dialysis-related amyloidosis (DRA). DRA occurs in long-term dialysis patients, with β2-m amyloid deposited mainly in osteoarticular tissues. We investigated a model of β2-m amyloid fibril extension at neutral pH in the presence of trifluoroethanol or sodium dodecyl sulfate. Using this model, some biological molecules, including glycosaminoglycans and lysophospholipids, were found to be chaperones for β2-m amyloid fibril extension. Several protein-bound solutes, such as indoxyl sulfate (IS) and p-cresyl sulfate, are independent risk factors for cardiovascular disease in CKD patients, especially those undergoing dialysis. We investigated kidney injury-induced acceleration of atherosclerosis in association with macrophage phenotypic change to a proinflammatory state as well as increased IS deposition in lesions in an animal model. IS directly induced macrophage inflammation and impaired cholesterol efflux to high-density lipoprotein (HDL) in vitro. In addition, a clinical study showed that HDL isolated from CKD patients induced proinflammatory reactions and impaired cholesterol efflux to macrophages. These findings suggest that protein-bound solutes, including IS, will induce dysfunction of both macrophages and HDL in atherosclerotic lesions. To remove uremic toxins efficiently, we demonstrated the potential efficacy of oral charcoal adsorbent and hexadecyl-immobilized cellulose beads in hemodialysis patients. These findings suggest that uremic toxins induce various CKD-related systemic disorders, and further therapeutic strategies will be needed to reduce uremic toxins enough and improve life expectancy in CKD patients.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 35 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 6 17%
Student > Ph. D. Student 5 14%
Other 2 6%
Researcher 2 6%
Student > Master 2 6%
Other 1 3%
Unknown 17 49%
Readers by discipline Count As %
Medicine and Dentistry 6 17%
Biochemistry, Genetics and Molecular Biology 3 9%
Pharmacology, Toxicology and Pharmaceutical Science 2 6%
Business, Management and Accounting 1 3%
Agricultural and Biological Sciences 1 3%
Other 4 11%
Unknown 18 51%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 June 2018.
All research outputs
#16,069,695
of 23,849,058 outputs
Outputs from Clinical and Experimental Nephrology
#409
of 769 outputs
Outputs of similar age
#212,363
of 331,729 outputs
Outputs of similar age from Clinical and Experimental Nephrology
#6
of 12 outputs
Altmetric has tracked 23,849,058 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 769 research outputs from this source. They receive a mean Attention Score of 3.7. This one is in the 36th percentile – i.e., 36% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 331,729 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 12 others from the same source and published within six weeks on either side of this one. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.