↓ Skip to main content

Instruments for reproducible setting of defects in cartilage and harvesting of osteochondral plugs for standardisation of preclinical tests for articular cartilage regeneration

Overview of attention for article published in Journal of Orthopaedic Surgery and Research, July 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
1 X user

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
22 Mendeley
Title
Instruments for reproducible setting of defects in cartilage and harvesting of osteochondral plugs for standardisation of preclinical tests for articular cartilage regeneration
Published in
Journal of Orthopaedic Surgery and Research, July 2015
DOI 10.1186/s13018-015-0257-x
Pubmed ID
Authors

Markus L. Schwarz, Barbara Schneider-Wald, Joachim Brade, Dieter Schleich, Andy Schütte, Gregor Reisig

Abstract

Standardisation is required in research, so are approval procedures for advanced therapy medical products and other procedures for articular cartilage therapies. The process of creating samples needs to be reproducible. The aim of this study was to design, create and validate instruments (1) to create reproducible and accurate defects and (2) to isolate samples in the shape of osteochondral cylinders in a quick, reliable and sterile manner. Adjustable instruments were created: a crown mill with a resolution of 0.05 mm and a front mill to create defects in articular cartilage and subchondral bone. The instruments were tested on knee joints of pigs from the slaughterhouse; 48 defects were created and evaluated. A punching machine was designed to harvest osteochondral plugs. These were validated in an in vivo animal study. The instruments respect the desired depth of 0.5 and 1.5 mm when creating the defects, depending on whether the person using the instrument is highly experienced (0.451 mm; confidence interval (CI): 0.390 mm; 0.512 mm and 1.403 mm; CI: 1.305 mm; 1.502 mm) or less so (0.369 mm; CI: 0.297 mm; 0.440 mm and 1.241 mm; CI: 1.141 mm; 1.341 mm). Eighty samples were taken from knee joints of Göttingen Minipigs with this punching technique. The time needed for the harvesting of the samples was 7.52 min (±2.18 min), the parallelism of the sides of the cylinders deviated by -0.63° (CI: -1.33°; 0.08°) and the surface of the cartilage deviated from the perpendicularity by 4.86° (CI: 4.154°; 5.573°). In all assessed cases, a sterile procedure was observed. Instruments and procedures for standardised creation and validation of defects in articular cartilage and subchondral bone were designed. Harvesting of samples in the shape of osteochondral cylinders can now be performed in a quick, reliable and sterile manner. The presented instruments and procedures can serve as helpful steps towards standardised operating procedures in the field of regenerative therapies of articular cartilage in research and for regulatory requirements.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Australia 1 5%
Unknown 21 95%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 32%
Student > Master 3 14%
Student > Ph. D. Student 2 9%
Student > Bachelor 1 5%
Unspecified 1 5%
Other 2 9%
Unknown 6 27%
Readers by discipline Count As %
Medicine and Dentistry 4 18%
Agricultural and Biological Sciences 2 9%
Design 2 9%
Engineering 2 9%
Computer Science 2 9%
Other 4 18%
Unknown 6 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 July 2015.
All research outputs
#15,340,815
of 22,818,766 outputs
Outputs from Journal of Orthopaedic Surgery and Research
#646
of 1,368 outputs
Outputs of similar age
#153,895
of 263,394 outputs
Outputs of similar age from Journal of Orthopaedic Surgery and Research
#21
of 39 outputs
Altmetric has tracked 22,818,766 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,368 research outputs from this source. They receive a mean Attention Score of 3.6. This one is in the 34th percentile – i.e., 34% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 263,394 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 39 others from the same source and published within six weeks on either side of this one. This one is in the 17th percentile – i.e., 17% of its contemporaries scored the same or lower than it.