↓ Skip to main content

Camelina sativa, an oilseed at the nexus between model system and commercial crop

Overview of attention for article published in Plant Cell Reports, June 2018
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • Among the highest-scoring outputs from this source (#11 of 2,364)
  • High Attention Score compared to outputs of the same age (93rd percentile)
  • High Attention Score compared to outputs of the same age and source (97th percentile)

Mentioned by

news
3 news outlets
twitter
17 X users
patent
2 patents

Citations

dimensions_citation
34 Dimensions

Readers on

mendeley
58 Mendeley
Title
Camelina sativa, an oilseed at the nexus between model system and commercial crop
Published in
Plant Cell Reports, June 2018
DOI 10.1007/s00299-018-2308-3
Pubmed ID
Authors

Meghna R. Malik, Jihong Tang, Nirmala Sharma, Claire Burkitt, Yuanyuan Ji, Marie Mykytyshyn, Karen Bohmert-Tatarev, Oliver Peoples, Kristi D. Snell

Abstract

The rapid assessment of metabolic engineering strategies in plants is aided by crops that provide simple, high throughput transformation systems, a sequenced genome, and the ability to evaluate the resulting plants in field trials. Camelina sativa provides all of these attributes in a robust oilseed platform. The ability to perform field evaluation of Camelina is a useful, and in some studies essential benefit that allows researchers to evaluate how traits perform outside the strictly controlled conditions of a greenhouse. In the field the plants are subjected to higher light intensities, seasonal diurnal variations in temperature and light, competition for nutrients, and watering regimes dictated by natural weather patterns, all which may affect trait performance. There are difficulties associated with the use of Camelina. The current genetic resources available for Camelina pale in comparison to those developed for the model plant Arabidopsis thaliana; however, the sequence similarity of the Arabidopsis and Camelina genomes often allows the use of Arabidopsis as a reference when additional information is needed. Camelina's genome, an allohexaploid, is more complex than other model crops, but the diploid inheritance of its three subgenomes is straightforward. The need to navigate three copies of each gene in genome editing or mutagenesis experiments adds some complexity but also provides advantages for gene dosage experiments. The ability to quickly engineer Camelina with novel traits, advance generations, and bulk up homozygous lines for small-scale field tests in less than a year, in our opinion, far outweighs the complexities associated with the crop.

X Demographics

X Demographics

The data shown below were collected from the profiles of 17 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 58 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 58 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 18 31%
Student > Master 12 21%
Student > Ph. D. Student 7 12%
Professor > Associate Professor 4 7%
Other 2 3%
Other 4 7%
Unknown 11 19%
Readers by discipline Count As %
Agricultural and Biological Sciences 24 41%
Biochemistry, Genetics and Molecular Biology 8 14%
Environmental Science 4 7%
Unspecified 1 2%
Business, Management and Accounting 1 2%
Other 3 5%
Unknown 17 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 39. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 January 2023.
All research outputs
#1,040,325
of 25,186,033 outputs
Outputs from Plant Cell Reports
#11
of 2,364 outputs
Outputs of similar age
#22,603
of 335,849 outputs
Outputs of similar age from Plant Cell Reports
#2
of 34 outputs
Altmetric has tracked 25,186,033 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 95th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,364 research outputs from this source. They receive a mean Attention Score of 4.2. This one has done particularly well, scoring higher than 99% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 335,849 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 93% of its contemporaries.
We're also able to compare this research output to 34 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 97% of its contemporaries.