↓ Skip to main content

Pin1 inhibition exerts potent activity against acute myeloid leukemia through blocking multiple cancer-driving pathways

Overview of attention for article published in Journal of Hematology & Oncology, May 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
24 Dimensions

Readers on

mendeley
21 Mendeley
Title
Pin1 inhibition exerts potent activity against acute myeloid leukemia through blocking multiple cancer-driving pathways
Published in
Journal of Hematology & Oncology, May 2018
DOI 10.1186/s13045-018-0611-7
Pubmed ID
Authors

Xiaolan Lian, Yu-Min Lin, Shingo Kozono, Megan K. Herbert, Xin Li, Xiaohong Yuan, Jiangrui Guo, Yafei Guo, Min Tang, Jia Lin, Yiping Huang, Bixin Wang, Chenxi Qiu, Cheng-Yu Tsai, Jane Xie, Ziang Jeff Gao, Yong Wu, Hekun Liu, Xiao Zhen Zhou, Kun Ping Lu, Yuanzhong Chen

Abstract

The increasing genomic complexity of acute myeloid leukemia (AML), the most common form of acute leukemia, poses a major challenge to its therapy. To identify potent therapeutic targets with the ability to block multiple cancer-driving pathways is thus imperative. The unique peptidyl-prolyl cis-trans isomerase Pin1 has been reported to promote tumorigenesis through upregulation of numerous cancer-driving pathways. Although Pin1 is a key drug target for treating acute promyelocytic leukemia (APL) caused by a fusion oncogene, much less is known about the role of Pin1 in other heterogeneous leukemia. The mRNA and protein levels of Pin1 were detected in samples from de novo leukemia patients and healthy controls using real-time quantitative RT-PCR (qRT-PCR) and western blot. The establishment of the lentiviral stable-expressed short hairpin RNA (shRNA) system and the tetracycline-inducible shRNA system for targeting Pin1 were used to analyze the biological function of Pin1 in AML cells. The expression of cancer-related Pin1 downstream oncoproteins in shPin1 (Pin1 knockdown) and Pin1 inhibitor all-trans retinoic acid (ATRA) treated leukemia cells were examined by western blot, followed by evaluating the effects of genetic and chemical inhibition of Pin1 in leukemia cells on transformed phenotype, including cell proliferation and colony formation ability, using trypan blue, cell counting assay, and colony formation assay in vitro, as well as the tumorigenesis ability using in vivo xenograft mouse models. First, we found that the expression of Pin1 mRNA and protein was significantly increased in both de novo leukemia clinical samples and multiple leukemia cell lines, compared with healthy controls. Furthermore, genetic or chemical inhibition of Pin1 in human multiple leukemia cell lines potently inhibited multiple Pin1 substrate oncoproteins and effectively suppressed leukemia cell proliferation and colony formation ability in cell culture models in vitro. Moreover, tetracycline-inducible Pin1 knockdown and slow-releasing ATRA potently inhibited tumorigenicity of U937 and HL-60 leukemia cells in xenograft mouse models. We demonstrate that Pin1 is highly overexpressed in human AML and is a promising therapeutic target to block multiple cancer-driving pathways in AML.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 21 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 29%
Student > Master 4 19%
Other 2 10%
Student > Bachelor 2 10%
Professor 1 5%
Other 2 10%
Unknown 4 19%
Readers by discipline Count As %
Medicine and Dentistry 9 43%
Biochemistry, Genetics and Molecular Biology 2 10%
Pharmacology, Toxicology and Pharmaceutical Science 2 10%
Chemistry 2 10%
Agricultural and Biological Sciences 1 5%
Other 0 0%
Unknown 5 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 June 2018.
All research outputs
#18,637,483
of 23,088,369 outputs
Outputs from Journal of Hematology & Oncology
#934
of 1,200 outputs
Outputs of similar age
#255,887
of 331,099 outputs
Outputs of similar age from Journal of Hematology & Oncology
#23
of 29 outputs
Altmetric has tracked 23,088,369 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,200 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.4. This one is in the 13th percentile – i.e., 13% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 331,099 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 29 others from the same source and published within six weeks on either side of this one. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.