↓ Skip to main content

Biological roles of microRNA-140 in tumor growth, migration, and metastasis of osteosarcoma in vivo and in vitro

Overview of attention for article published in Tumor Biology, July 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
12 Mendeley
Title
Biological roles of microRNA-140 in tumor growth, migration, and metastasis of osteosarcoma in vivo and in vitro
Published in
Tumor Biology, July 2015
DOI 10.1007/s13277-015-3801-8
Pubmed ID
Authors

Rui Gu, Yi-Fu Sun, Min-Fei Wu, Jia-Bei Liu, Jin-Lan Jiang, Shuai-Hua Wang, Xin-Lei Wang, Qiang Guo

Abstract

The objective of this study was to explore the biological roles of microRNA-140 (miR-140) in tumor growth, migration, and metastasis of osteosarcoma (OS) in vivo and in vitro. Between 2007 and 2014, 47 cases of OS samples and normal bone tissue samples adjacent to OS were selected from our hospital. Tissue biopsies from OS patients were used to measure miR-140 levels to obtain a correlation between clinicopathological features and miR-140 expression. In vitro, MG63 human osteosarcoma cells were divided into four groups: blank group, miR-140 mimic group, miR-140 inhibitor group, and negative control (NC; empty plasmid) group. qRT-PCR was used to detect miR-140 expression, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to detect cell proliferation, flow cytometry was used to detect cell cycle distribution, and scratch migration assay was used to detect cell migration. In vivo, the relative expression of miR-140 level in OS tissue was lower than that in the adjacent normal bone tissue. miR-140 expression is inversely correlated with tumor size, Enneking stage, and tumor metastasis. In vitro, compared with blank group and NC group, relative miR-140 expression was increased, cell proliferation was inhibited, cell population in G0/G1 phase was increased, cell population in G2/M phase and S phases and proliferation index (PI), and cell migration distance were decreased in the miR-140 mimic group, but the relative expression and all the cell indexes were found opposite trend in the miR-140 inhibitor group. In conclusion, in vivo and vitro findings provided evidence that miR-140 could inhibit the growth, migration, and metastasis of OS cells.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 12 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 12 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 3 25%
Researcher 3 25%
Student > Ph. D. Student 2 17%
Student > Doctoral Student 1 8%
Student > Master 1 8%
Other 1 8%
Unknown 1 8%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 42%
Agricultural and Biological Sciences 3 25%
Psychology 2 17%
Nursing and Health Professions 1 8%
Unknown 1 8%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 July 2015.
All research outputs
#20,284,384
of 22,818,766 outputs
Outputs from Tumor Biology
#1,834
of 2,622 outputs
Outputs of similar age
#220,064
of 263,426 outputs
Outputs of similar age from Tumor Biology
#117
of 175 outputs
Altmetric has tracked 22,818,766 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,622 research outputs from this source. They receive a mean Attention Score of 2.2. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 263,426 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 175 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.