↓ Skip to main content

Detection and characterization of small insertion and deletion genetic variants in modern layer chicken genomes

Overview of attention for article published in BMC Genomics, July 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 X users

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
44 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Detection and characterization of small insertion and deletion genetic variants in modern layer chicken genomes
Published in
BMC Genomics, July 2015
DOI 10.1186/s12864-015-1711-1
Pubmed ID
Authors

Clarissa Boschiero, Almas A. Gheyas, Hannah K. Ralph, Lel Eory, Bob Paton, Richard Kuo, Janet Fulton, Rudolf Preisinger, Pete Kaiser, David W. Burt

Abstract

Small insertions and deletions (InDels) constitute the second most abundant class of genetic variants and have been found to be associated with many traits and diseases. The present study reports on the detection and characterisation of about 883 K high quality InDels from the whole-genome analysis of several modern layer chicken lines from diverse breeds. To reduce the error rates seen in InDel detection, this study used the consensus set from two InDel-calling packages: SAMtools and Dindel, as well as stringent post-filtering criteria. By analysing sequence data from 163 chickens from 11 commercial and 5 experimental layer lines, this study detected about 883 K high quality consensus InDels with 93 % validation rate and an average density of 0.78 InDels/kb over the genome. Certain chromosomes, viz, GGAZ, 16, 22 and 25 showed very low densities of InDels whereas the highest rate was observed on GGA6. In spite of the higher recombination rates on microchromosomes, the InDel density on these chromosomes was generally lower relative to macrochromosomes possibly due to their higher gene density. About 43-87 % of the InDels were found to be fixed within each line. The majority of detected InDels (86 %) were 1-5 bases and about 63 % were non-repetitive in nature while the rest were tandem repeats of various motif types. Functional annotation identified 613 frameshift, 465 non-frameshift and 10 stop-gain/loss InDels. Apart from the frameshift and stopgain/loss InDels that are expected to affect the translation of protein sequences and their biological activity, 33 % of the non-frameshift were predicted as evolutionary intolerant with potential impact on protein functions. Moreover, about 2.5 % of the InDels coincided with the most-conserved elements previously mapped on the chicken genome and are likely to define functional elements. InDels potentially affecting protein function were found to be enriched for certain gene-classes e.g. those associated with cell proliferation, chromosome and Golgi organization, spermatogenesis, and muscle contraction. The large catalogue of InDels presented in this study along with their associated information such as functional annotation, estimated allele frequency, etc. are expected to serve as a rich resource for application in future research and breeding in the chicken.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 44 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 44 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 30%
Researcher 7 16%
Student > Bachelor 5 11%
Student > Master 5 11%
Professor 1 2%
Other 3 7%
Unknown 10 23%
Readers by discipline Count As %
Agricultural and Biological Sciences 15 34%
Biochemistry, Genetics and Molecular Biology 7 16%
Veterinary Science and Veterinary Medicine 2 5%
Engineering 2 5%
Computer Science 2 5%
Other 4 9%
Unknown 12 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 March 2016.
All research outputs
#15,340,815
of 22,818,766 outputs
Outputs from BMC Genomics
#6,693
of 10,653 outputs
Outputs of similar age
#153,591
of 262,894 outputs
Outputs of similar age from BMC Genomics
#182
of 243 outputs
Altmetric has tracked 22,818,766 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,653 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 29th percentile – i.e., 29% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 262,894 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 243 others from the same source and published within six weeks on either side of this one. This one is in the 18th percentile – i.e., 18% of its contemporaries scored the same or lower than it.