↓ Skip to main content

Bayesian functional regression as an alternative statistical analysis of high-throughput phenotyping data of modern agriculture

Overview of attention for article published in Plant Methods, June 2018
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (67th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (63rd percentile)

Mentioned by

twitter
8 X users

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
51 Mendeley
Title
Bayesian functional regression as an alternative statistical analysis of high-throughput phenotyping data of modern agriculture
Published in
Plant Methods, June 2018
DOI 10.1186/s13007-018-0314-7
Pubmed ID
Authors

Abelardo Montesinos-López, Osval A. Montesinos-López, Gustavo de los Campos, José Crossa, Juan Burgueño, Francisco Javier Luna-Vazquez

Abstract

Modern agriculture uses hyperspectral cameras with hundreds of reflectance data at discrete narrow bands measured in several environments. Recently, Montesinos-López et al. (Plant Methods 13(4):1-23, 2017a. 10.1186/s13007-016-0154-2; Plant Methods 13(62):1-29, 2017b. 10.1186/s13007-017-0212-4) proposed using functional regression analysis (as functional data analyses) to help reduce the dimensionality of the bands and thus decrease the computational cost. The purpose of this paper is to discuss the advantages and disadvantages that functional regression analysis offers when analyzing hyperspectral image data. We provide a brief review of functional regression analysis and examples that illustrate the methodology. We highlight critical elements of model specification: (i) type and number of basis functions, (ii) the degree of the polynomial, and (iii) the methods used to estimate regression coefficients. We also show how functional data analyses can be integrated into Bayesian models. Finally, we include an in-depth discussion of the challenges and opportunities presented by functional regression analysis. We used seven model-methods, one with the conventional model (M1), three methods using the B-splines model (M2, M4, and M6) and three methods using the Fourier basis model (M3, M5, and M7). The data set we used comprises 976 wheat lines under irrigated environments with 250 wavelengths. Under a Bayesian Ridge Regression (BRR), we compared the prediction accuracy of the model-methods proposed under different numbers of basis functions, and compared the implementation time (in seconds) of the seven proposed model-methods for different numbers of basis. Our results as well as previously analyzed data (Montesinos-López et al. 2017a, 2017b) support that around 23 basis functions are enough. Concerning the degree of the polynomial in the context of B-splines, degree 3 approximates most of the curves very well. Two satisfactory types of basis are the Fourier basis for period curves and the B-splines model for non-periodic curves. Under nine different basis, the seven method-models showed similar prediction accuracy. Regarding implementation time, results show that the lower the number of basis, the lower the implementation time required. Methods M2, M3, M6 and M7 were around 3.4 times faster than methods M1, M4 and M5. In this study, we promote the use of functional regression modeling for analyzing high-throughput phenotypic data and indicate the advantages and disadvantages of its implementation. In addition, many key elements that are needed to understand and implement this statistical technique appropriately are provided using a real data set. We provide details for implementing Bayesian functional regression using the developed genomic functional regression (GFR) package. In summary, we believe this paper is a good guide for breeders and scientists interested in using functional regression models for implementing prediction models when their data are curves.

X Demographics

X Demographics

The data shown below were collected from the profiles of 8 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 51 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 51 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 20%
Researcher 8 16%
Student > Bachelor 5 10%
Student > Doctoral Student 4 8%
Student > Master 4 8%
Other 7 14%
Unknown 13 25%
Readers by discipline Count As %
Agricultural and Biological Sciences 20 39%
Engineering 5 10%
Mathematics 2 4%
Environmental Science 2 4%
Computer Science 2 4%
Other 4 8%
Unknown 16 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 August 2020.
All research outputs
#7,055,727
of 25,765,370 outputs
Outputs from Plant Methods
#415
of 1,286 outputs
Outputs of similar age
#112,067
of 342,595 outputs
Outputs of similar age from Plant Methods
#11
of 30 outputs
Altmetric has tracked 25,765,370 research outputs across all sources so far. This one has received more attention than most of these and is in the 72nd percentile.
So far Altmetric has tracked 1,286 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one has gotten more attention than average, scoring higher than 67% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 342,595 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 67% of its contemporaries.
We're also able to compare this research output to 30 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 63% of its contemporaries.