↓ Skip to main content

Sp-miR396a-5p acts as a stress-responsive genes regulator by conferring tolerance to abiotic stresses and susceptibility to Phytophthora nicotianae infection in transgenic tobacco

Overview of attention for article published in Plant Cell Reports, August 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (64th percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
112 Dimensions

Readers on

mendeley
65 Mendeley
Title
Sp-miR396a-5p acts as a stress-responsive genes regulator by conferring tolerance to abiotic stresses and susceptibility to Phytophthora nicotianae infection in transgenic tobacco
Published in
Plant Cell Reports, August 2015
DOI 10.1007/s00299-015-1847-0
Pubmed ID
Authors

Lei Chen, Yushi Luan, Junmiao Zhai

Abstract

Overexpression of Sp-miR396a-5p in tobacco increased tolerance to salt, drought, cold stress and susceptibility to Phytophthora nicotianae infection. MicroRNA396 (miR396) is one of the conserved microRNA families in plants, and it targeted growth-regulating factors (GRFs) family. The GRF transcription factors are associated with growth and stress responses. However, the molecular mechanisms of miR396 responding to environmental stresses are elusive. The purpose of this study was to explore the function of tomato miR396a-5p (Sp-miR396a-5p) in Solanaceae responses to abiotic and biotic stresses. We showed that Sp-miR396a-5p transcript levels were up-regulated under salt and drought stresses and down-regulated after Phytophthora infestans (P. infestans) infection. Consistently, overexpression of Sp-miR396a-5p in tobacco enhanced its tolerance to salt, drought and cold stresses. Additionally, the expression of Sp-miR396a-5p was found to be down-regulated under pathogen-related biotic stress. Tobacco plants overexpressing Sp-miR396a-5p showed increased susceptibility to Phytophthora nicotianae (P. nicotianae) infection. Physiological analysis indicated that Sp-miR396a-5p overexpression enhanced osmoregulation and decreased production of reactive oxygen species (ROS). Furthermore, four Sp-miR396a-5p target genes, NtGRF1, NtGRF3, NtGRF7 and NtGRF8, were down-regulated in these plants. Our results suggested that Sp-miR396a-5p plays critical roles in both abiotic stresses through targeting NtGRF7-regulated expression of osmotic stress-responsive genes and pathogen infection via the regulatory networks of NtGRF1 and NtGRF3.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 65 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Chile 1 2%
India 1 2%
Unknown 63 97%

Demographic breakdown

Readers by professional status Count As %
Researcher 17 26%
Student > Ph. D. Student 14 22%
Student > Bachelor 7 11%
Student > Master 6 9%
Professor > Associate Professor 4 6%
Other 4 6%
Unknown 13 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 30 46%
Biochemistry, Genetics and Molecular Biology 16 25%
Arts and Humanities 1 2%
Computer Science 1 2%
Economics, Econometrics and Finance 1 2%
Other 0 0%
Unknown 16 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 September 2016.
All research outputs
#15,342,608
of 22,821,814 outputs
Outputs from Plant Cell Reports
#1,742
of 2,185 outputs
Outputs of similar age
#154,541
of 264,147 outputs
Outputs of similar age from Plant Cell Reports
#5
of 25 outputs
Altmetric has tracked 22,821,814 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,185 research outputs from this source. They receive a mean Attention Score of 4.1. This one is in the 16th percentile – i.e., 16% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,147 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 25 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 64% of its contemporaries.