↓ Skip to main content

Comparative Analysis of Diffusional Kurtosis Imaging, Diffusion Tensor Imaging, and Diffusion-Weighted Imaging in Grading and Assessing Cellular Proliferation of Meningiomas

Overview of attention for article published in American Journal of Neuroradiology, May 2018
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
35 Dimensions

Readers on

mendeley
39 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Comparative Analysis of Diffusional Kurtosis Imaging, Diffusion Tensor Imaging, and Diffusion-Weighted Imaging in Grading and Assessing Cellular Proliferation of Meningiomas
Published in
American Journal of Neuroradiology, May 2018
DOI 10.3174/ajnr.a5662
Pubmed ID
Authors

L Lin, R Bhawana, Y Xue, Q Duan, R Jiang, H Chen, X Chen, B Sun, H Lin

Abstract

An accurate evaluation of the World Health Organization grade and cellular proliferation is particularly important in meningiomas. Our aim was to prospectively evaluate and compare diffusional kurtosis imaging, DTI, and DWI metrics in determining the grade and cellular proliferation of meningiomas. Ninety-six consecutive patients with histopathologically confirmed meningiomas were included in this study. Mean kurtosis, radial kurtosis, axial kurtosis, fractional anisotropy, mean diffusivity, and ADC were semiautomatically obtained in the solid components of tumors. Each normalized diffusion value was compared between high-grade meningiomas and low-grade meningiomas using the Mann-Whitney U test. Receiver operating characteristic, multiple logistic regression, and Pearson correlation analysis were used for statistical evaluations. Diffusional kurtosis imaging metrics (mean kurtosis, radial kurtosis, and axial kurtosis) were significantly higher in high-grade meningiomas than in low-grade meningiomas (P ≤ .001). Mean diffusivity and ADC were significantly lower in high-grade meningiomas than in low-grade meningiomas (P = .003 and .002). Mean kurtosis had significantly greater area the under curve values than mean diffusivity and fractional anisotropy in differentiating high-grade meningiomas from low-grade meningiomas (P = .038 and .002). Mean kurtosis was the only variable that could be used to independently differentiate high-grade meningiomas and low-grade meningiomas (P < .001). Significant correlations were found between the Ki-67 labeling index and kurtosis metrics (P < .001), as well as for mean diffusivity and ADC (P = .004, and .007). Compared with other diffusion metrics, mean kurtosis may serve as an optimal parameter for evaluating and predicting the meningioma grade. Moreover, diffusion metrics may potentially reflect cellular proliferation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 39 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 39 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 18%
Student > Master 6 15%
Student > Doctoral Student 4 10%
Student > Ph. D. Student 4 10%
Student > Bachelor 3 8%
Other 6 15%
Unknown 9 23%
Readers by discipline Count As %
Medicine and Dentistry 11 28%
Neuroscience 6 15%
Nursing and Health Professions 2 5%
Engineering 2 5%
Computer Science 2 5%
Other 7 18%
Unknown 9 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 July 2019.
All research outputs
#17,980,413
of 23,090,520 outputs
Outputs from American Journal of Neuroradiology
#4,074
of 4,924 outputs
Outputs of similar age
#236,428
of 326,092 outputs
Outputs of similar age from American Journal of Neuroradiology
#71
of 79 outputs
Altmetric has tracked 23,090,520 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,924 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one is in the 14th percentile – i.e., 14% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,092 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 79 others from the same source and published within six weeks on either side of this one. This one is in the 8th percentile – i.e., 8% of its contemporaries scored the same or lower than it.