↓ Skip to main content

Application of Virtual Three-Dimensional Models for Simultaneous Visualization of Intracardiac Anatomic Relationships in Double Outlet Right Ventricle

Overview of attention for article published in Pediatric Cardiology, August 2015
Altmetric Badge

Citations

dimensions_citation
66 Dimensions

Readers on

mendeley
68 Mendeley
Title
Application of Virtual Three-Dimensional Models for Simultaneous Visualization of Intracardiac Anatomic Relationships in Double Outlet Right Ventricle
Published in
Pediatric Cardiology, August 2015
DOI 10.1007/s00246-015-1244-z
Pubmed ID
Authors

Kanwal M. Farooqi, Santosh C. Uppu, Khanh Nguyen, Shubhika Srivastava, H. Helen Ko, Nadine Choueiter, Adi Wollstein, Ira A. Parness, Jagat Narula, Javier Sanz, James C. Nielsen

Abstract

Our goal was to construct three-dimensional (3D) virtual models to allow simultaneous visualization of the ventricles, ventricular septal defect (VSD) and great arteries in patients with complex intracardiac anatomy to aid in surgical planning. We also sought to correlate measurements from the source cardiac magnetic resonance (CMR) image dataset and the 3D model. Complicated ventriculo-arterial relationships in patients with complex conotruncal malformations make preoperative assessment of possible repair pathways difficult. Patients were chosen with double outlet right ventricle for the complexity of intracardiac anatomy and potential for better delineation of anatomic spatial relationships. Virtual 3D models were generated from CMR 3D datasets. Measurements were made on the source CMR as well as the 3D model for the following structures: aortic diameter in orthogonal planes, VSD diameter in orthogonal planes and long axis of right ventricle. A total of six patients were identified for inclusion. The path from the ventricles to each respective outflow tract and the location of the VSD with respect to each great vessel was visualized clearly in all patients. Measurements on the virtual model showed excellent correlation with the source CMR when all measurements were included by Pearson coefficient, r = 0.99 as well as for each individual structure. Construction of virtual 3D models in patients with complex conotruncal defects from 3D CMR datasets allows for simultaneous visualization of anatomic relationships relevant for surgical repair. The availability of these models may allow for a more informed preoperative evaluation in these patients.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 68 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Hong Kong 1 1%
Unknown 67 99%

Demographic breakdown

Readers by professional status Count As %
Researcher 14 21%
Student > Ph. D. Student 8 12%
Other 7 10%
Student > Master 6 9%
Professor 3 4%
Other 15 22%
Unknown 15 22%
Readers by discipline Count As %
Medicine and Dentistry 27 40%
Engineering 7 10%
Biochemistry, Genetics and Molecular Biology 2 3%
Business, Management and Accounting 2 3%
Social Sciences 2 3%
Other 7 10%
Unknown 21 31%