↓ Skip to main content

The effects of muscle contraction and recombinant osteocalcin on insulin sensitivity ex vivo

Overview of attention for article published in Osteoporosis International, August 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
43 Dimensions

Readers on

mendeley
29 Mendeley
Title
The effects of muscle contraction and recombinant osteocalcin on insulin sensitivity ex vivo
Published in
Osteoporosis International, August 2015
DOI 10.1007/s00198-015-3273-0
Pubmed ID
Authors

I. Levinger, X. Lin, X. Zhang, T. C. Brennan-Speranza, B. Volpato, A. Hayes, G. Jerums, E. Seeman, G. McConell

Abstract

We tested whether GPRC6A, the putative receptor of undercarboxylated osteocalcin (ucOC), is present in mouse muscle and whether ucOC increases insulin sensitivity following ex vivo muscle contraction. GPPRC6A is expressed in mouse muscle and in the mouse myotubes from a cell line. ucOC potentiated the effect of ex vivo contraction on insulin sensitivity. Acute exercise increases skeletal muscle insulin sensitivity. In humans, exercise increases circulating ucOC, a hormone that increases insulin sensitivity in rodents. We tested whether GPRC6A, the putative receptor of ucOC, is present in mouse muscle and whether recombinant ucOC increases insulin sensitivity in both C2C12 myotubes and whole mouse muscle following ex vivo muscle contraction. Glucose uptake was examined in C2C12 myotubes that express GPRC6A following treatment with insulin alone or with insulin and increasing ucOC concentrations (0.3, 3, 10 and 30 ng/ml). In addition, glucose uptake, phosphorylated (p-)AKT and p-AS160 were examined ex vivo in extensor digitorum longus (EDL) dissected from C57BL/6J wild-type mice, at rest, following insulin alone, after muscle contraction followed by insulin and after muscle contraction followed by recombinant ucOC then insulin exposure. We observed protein expression of the likely receptor for ucOC, GPRC6A, in whole muscle sections and differentiated mouse myotubes. We observed reduced GPRC6A expression following siRNA transfection. ucOC significantly increased insulin-stimulated glucose uptake dose-dependently up to 10 ng/ml, in differentiated mouse C2C12 myotubes. Insulin increased EDL glucose uptake (∼30 %, p < 0.05) and p-AKT and p-AKT/AKT compared with rest (all p < 0.05). Contraction prior to insulin increased muscle glucose uptake (∼25 %, p < 0.05), p-AKT, p-AKT/AKT, p-AS160 and p-AS160/AS160 compared with contraction alone (all p < 0.05). ucOC after contraction increased insulin-stimulated muscle glucose uptake (∼12 % p < 0.05) and p-AS160 (<0.05) more than contraction plus insulin alone but without effect on p-AKT. In the absence of insulin and/or of contraction, ucOC had no significant effect on muscle glucose uptake. GPRC6A, the likely receptor of osteocalcin (OC), is expressed in mouse muscle. ucOC treatment augments insulin-stimulated skeletal muscle glucose uptake in C2C12 myotubes and following ex vivo muscle contraction. ucOC may partly account for the insulin sensitizing effect of exercise.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Brazil 1 3%
Unknown 28 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 17%
Student > Master 5 17%
Researcher 4 14%
Student > Bachelor 2 7%
Professor > Associate Professor 2 7%
Other 2 7%
Unknown 9 31%
Readers by discipline Count As %
Agricultural and Biological Sciences 5 17%
Medicine and Dentistry 4 14%
Sports and Recreations 3 10%
Biochemistry, Genetics and Molecular Biology 2 7%
Pharmacology, Toxicology and Pharmaceutical Science 2 7%
Other 3 10%
Unknown 10 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 August 2015.
All research outputs
#20,286,650
of 22,821,814 outputs
Outputs from Osteoporosis International
#2,964
of 3,610 outputs
Outputs of similar age
#221,483
of 264,425 outputs
Outputs of similar age from Osteoporosis International
#59
of 79 outputs
Altmetric has tracked 22,821,814 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,610 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,425 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 79 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.