↓ Skip to main content

Site-specific differences in osteoblast phenotype, mechanical loading response and estrogen receptor-related gene expression

Overview of attention for article published in Molecular & Cellular Endocrinology, June 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
20 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Site-specific differences in osteoblast phenotype, mechanical loading response and estrogen receptor-related gene expression
Published in
Molecular & Cellular Endocrinology, June 2018
DOI 10.1016/j.mce.2018.06.011
Pubmed ID
Authors

Borzo Gharibi, Mandeep S Ghuman, Giuseppe Cama, Simon C F Rawlinson, Agamemnon E Grigoriadis, Francis J Hughes

Abstract

The osteoporosis-resistant nature of skull bones implies inherent differences exist between their cellular responses and those of other osteoporosis-susceptible skeletal sites. Phenotypic differences in calvarial and femoral osteoblastic responses to induction of osteogenesis, mechanical loading, estrogen, growth factor and cytokine stimulation were investigated. Primary rat calvarial and femoral adult male osteoblasts were cultured and osteoblastic mineralisation and maturation determined using Alizarin Red staining and expression of osteogenic marker genes assessed. Expression of known mechanically-responsive genes was compared between sites following loading of scaffold-seeded cells in a bioreactor. Cell proliferation and differentiation following growth factor and estrogen stimulation were also compared. Finally expression of estrogen receptors and associated genes during osteogenic differentiation were investigated. Calvarial osteoblasts exhibited delayed maturation (45d. vs 21d.) and produced less mineralised matrix than femoral osteoblasts when osteogenically induced. PDGF-BB and FGF2 both caused a selective increase in proliferation and decrease in osteoblastic differentiation of femoral osteoblasts. Mechanical stimulation resulted in the induction of the expression of Ccl2 and Anx2a selectively in femoral osteoblasts, but remained unchanged in calvarial cells. Estrogen receptor beta expression was selectively upregulated 2-fold in calvarial osteoblasts. Most interestingly, the estrogen responsive transcriptional repressor RERG was constitutively expressed at 1000-fold greater levels in calvarial compared with femoral osteoblasts. RERG expression in calvarial osteoblasts was down regulated during osteogenic induction whereas upregulation occurred in femoral osteoblasts. Bone cells of the skull are inherently different to those of the femur, and respond differentially to a range of stimuli. These site-specific differences may have important relevance in the development of strategies to tackle metabolic bone disorders.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 20 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 20%
Student > Master 3 15%
Lecturer > Senior Lecturer 1 5%
Unspecified 1 5%
Researcher 1 5%
Other 1 5%
Unknown 9 45%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 20%
Engineering 2 10%
Unspecified 1 5%
Veterinary Science and Veterinary Medicine 1 5%
Agricultural and Biological Sciences 1 5%
Other 1 5%
Unknown 10 50%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 June 2018.
All research outputs
#22,767,715
of 25,385,509 outputs
Outputs from Molecular & Cellular Endocrinology
#2,512
of 2,950 outputs
Outputs of similar age
#299,538
of 341,602 outputs
Outputs of similar age from Molecular & Cellular Endocrinology
#22
of 26 outputs
Altmetric has tracked 25,385,509 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,950 research outputs from this source. They receive a mean Attention Score of 4.8. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 341,602 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 26 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.