↓ Skip to main content

A geostatistical state‐space model of animal densities for stream networks

Overview of attention for article published in Ecological Applications, July 2018
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (53rd percentile)

Mentioned by

twitter
7 X users

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
50 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A geostatistical state‐space model of animal densities for stream networks
Published in
Ecological Applications, July 2018
DOI 10.1002/eap.1767
Pubmed ID
Authors

Daniel J. Hocking, James T. Thorson, Kyle O'Neil, Benjamin H. Letcher

Abstract

Population dynamics are often correlated in space and time due to correlations in environmental drivers as well as synchrony induced by individual dispersal. Many statistical analyses of populations ignore potential autocorrelations and assume that survey methods (distance and time between samples) eliminate these correlations, allowing samples to be treated independently. If these assumptions are incorrect, results and therefore inference may be biased and uncertainty under-estimated. We developed a novel statistical method to account for spatio-temporal correlations within dendritic stream networks, while accounting for imperfect detection in the surveys. Through simulations, we found this model decreased predictive error relative to standard statistical methods when data were spatially correlated based on stream distance and performed similarly when data were not correlated. We found that increasing the number of years surveyed substantially improved the model accuracy when estimating spatial and temporal correlation coefficients, especially from 10 to 15 years. Increasing the number of survey sites within the network improved the performance of the non-spatial model but only marginally improved the density estimates in the spatio-temporal model. We applied this model to Brook Trout data from the West Susquehanna Watershed in Pennsylvania collected over 34 years from 1981 - 2014. We found the model including temporal and spatio-temporal autocorrelation best described young-of-the-year (YOY) and adult density patterns. YOY densities were positively related to forest cover and negatively related to spring temperatures with low temporal autocorrelation and moderately-high spatio-temporal correlation. Adult densities were less strongly affected by climatic conditions and less temporally variable than YOY but with similar spatio-temporal correlation and higher temporal autocorrelation. This article is protected by copyright. All rights reserved.

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 50 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 50 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 14 28%
Student > Ph. D. Student 11 22%
Student > Master 7 14%
Student > Doctoral Student 4 8%
Other 4 8%
Other 6 12%
Unknown 4 8%
Readers by discipline Count As %
Agricultural and Biological Sciences 17 34%
Environmental Science 13 26%
Biochemistry, Genetics and Molecular Biology 1 2%
Unspecified 1 2%
Mathematics 1 2%
Other 3 6%
Unknown 14 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 November 2018.
All research outputs
#7,755,290
of 23,577,761 outputs
Outputs from Ecological Applications
#1,740
of 3,230 outputs
Outputs of similar age
#130,411
of 330,796 outputs
Outputs of similar age from Ecological Applications
#33
of 43 outputs
Altmetric has tracked 23,577,761 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,230 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 15.5. This one is in the 27th percentile – i.e., 27% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,796 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.
We're also able to compare this research output to 43 others from the same source and published within six weeks on either side of this one. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.