↓ Skip to main content

Fine mapping of bone structure and strength QTLs in heterogeneous stock rat

Overview of attention for article published in BONE, August 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
25 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Fine mapping of bone structure and strength QTLs in heterogeneous stock rat
Published in
BONE, August 2015
DOI 10.1016/j.bone.2015.08.013
Pubmed ID
Authors

Imranul Alam, Daniel L. Koller, Toni Cañete, Gloria Blázquez, Carme Mont-Cardona, Regina López-Aumatell, Esther Martínez-Membrives, Sira Díaz-Morán, Adolf Tobeña, Alberto Fernández-Teruel, Pernilla Stridh, Margarita Diez, Tomas Olsson, Martina Johannesson, Amelie Baud, Michael J. Econs, Tatiana Foroud

Abstract

We previously demonstrated that skeletal structure and strength phenotypes vary considerably in heterogeneous stock (HS) rats. These phenotypes were found to be strongly heritable, suggesting that the HS rat model represents a unique genetic resource for dissecting the complex genetic etiology underlying bone fragility. The purpose of this study was to identify and localize genes associated with bone structure and strength phenotypes using 1524 adult male and female HS rats between 17 to 20 weeks of age. Structure measures included femur length, neck width, head width; femur and lumbar spine (L3-5) areas obtained by DXA; and cross-sectional areas (CSA) at the midshaft, distal femur and femoral neck, and the 5th lumbar vertebra measured by CT. In addition, measures of strength of the whole femur and femoral neck were obtained. Approximately 70,000 polymorphic SNPs distributed throughout the rat genome were selected for genotyping, with a mean linkage disequilibrium coefficient between neighboring SNPs of 0.95. Haplotypes were estimated across the entire genome for each rat using a multipoint haplotype reconstruction method, which calculates the probability of descent at each locus from each of the 8 HS founder strains. The haplotypes were then tested for association with each structure and strength phenotype via a mixed model with covariate adjustment. We identified quantitative trait loci (QTLs) for structure phenotypes on chromosomes 3, 8, 10, 12, 17 and 20, and QTLs for strength phenotypes on chromosomes 5, 10 and 11 that met a conservative genome-wide empiric significance threshold (FDR=5%; P<3 X 10(-6)). Importantly, most QTLs were localized to very narrow genomic regions (as small as 0.3Mb and up to 3 Mb), each harboring a small set of candidate genes, both novel and previously shown to have roles in skeletal development and homeostasis.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 1 4%
Colombia 1 4%
Unknown 23 92%

Demographic breakdown

Readers by professional status Count As %
Other 5 20%
Researcher 5 20%
Student > Doctoral Student 3 12%
Professor > Associate Professor 3 12%
Professor 2 8%
Other 6 24%
Unknown 1 4%
Readers by discipline Count As %
Medicine and Dentistry 6 24%
Neuroscience 6 24%
Biochemistry, Genetics and Molecular Biology 3 12%
Psychology 3 12%
Agricultural and Biological Sciences 2 8%
Other 2 8%
Unknown 3 12%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 August 2015.
All research outputs
#22,938,588
of 25,576,801 outputs
Outputs from BONE
#3,664
of 4,344 outputs
Outputs of similar age
#238,319
of 277,977 outputs
Outputs of similar age from BONE
#43
of 74 outputs
Altmetric has tracked 25,576,801 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,344 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 277,977 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 74 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.