↓ Skip to main content

Fish oil-derived lipid emulsion induces RIP1-dependent and caspase 8-licensed necroptosis in IEC-6 cells through overproduction of reactive oxygen species

Overview of attention for article published in Lipids in Health and Disease, June 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
10 Mendeley
Title
Fish oil-derived lipid emulsion induces RIP1-dependent and caspase 8-licensed necroptosis in IEC-6 cells through overproduction of reactive oxygen species
Published in
Lipids in Health and Disease, June 2018
DOI 10.1186/s12944-018-0786-5
Pubmed ID
Authors

Jun-Kai Yan, Wei-Hui Yan, Wei Cai

Abstract

Excessive cell death of enterocytes has been demonstrated to be partially associated with the intravenously-administrated lipid emulsions (LEs) during parenteral nutrition (PN) support. However, as a new generation of LE, the effect of fish oil-derived lipid emulsion (FOLE) on the death of enterocytes remains elusive. Intestinal epithelial cells (IEC-6 cell line) were treated with FOLE (0.25-1%) for 24 h. Cell survival was measured by CCK-8 assay, and morphological changes were monitored by time-lapse live cell imaging. The expression of receptor-interacting protein 1/3 (RIP1/3) and caspase 8 was assessed by westernblot, and the formation of necrosome (characterized by the assembly of RIP1/3 complex along with the dissociation of caspase 8) was examined by immunoprecipitation. Additionally, the production of intracellular reactive oxygen species (ROS) was detected by using a ROS detection kit with an oxidation-sensitive probe (DCFH-DA). FOLE dose-dependently induced non-apoptotic, but programmed necroctic cell death (necroptosis) within 4-8 h after treatment. The assembly of RIP1/3 complex along with the dissociation of caspase 8 from RIP1 was observed in FOLE-treated cells. Moreover, FOLE-induced cell death was significantly alleviated by inhibiting RIP1, and was further aggravated by inhibiting caspase 8. In addition, prior to cell death the accumulation of intracellular ROS was significantly increased in FOLE-treated cells (increased by approximately 5-fold versus control, p < 0.001), which could be attenuated by inhibiting RIP1 (decreased by approximately 35% versus FOLE, p < 0.05). FOLE induces RIP1-dependent and caspase 8-licensed necroptosis through overproduction of ROS in vitro. Our findings may provide novel insights into the clinical applications of FOLE during PN support.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 10 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 10 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 30%
Lecturer 2 20%
Student > Bachelor 2 20%
Professor 1 10%
Unknown 2 20%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 50%
Medicine and Dentistry 2 20%
Nursing and Health Professions 1 10%
Unknown 2 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 June 2018.
All research outputs
#18,640,437
of 23,092,602 outputs
Outputs from Lipids in Health and Disease
#989
of 1,459 outputs
Outputs of similar age
#253,751
of 328,763 outputs
Outputs of similar age from Lipids in Health and Disease
#25
of 41 outputs
Altmetric has tracked 23,092,602 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,459 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.1. This one is in the 17th percentile – i.e., 17% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,763 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 41 others from the same source and published within six weeks on either side of this one. This one is in the 24th percentile – i.e., 24% of its contemporaries scored the same or lower than it.