↓ Skip to main content

Analyses of the genetic diversity and protein expression variation of the acyl: CoA medium-chain ligases, ACSM2A and ACSM2B

Overview of attention for article published in Molecular Genetics and Genomics, June 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (54th percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
20 Mendeley
Title
Analyses of the genetic diversity and protein expression variation of the acyl: CoA medium-chain ligases, ACSM2A and ACSM2B
Published in
Molecular Genetics and Genomics, June 2018
DOI 10.1007/s00438-018-1460-3
Pubmed ID
Authors

Rencia van der Sluis

Abstract

Benzoate (found in milk and widely used as preservative), salicylate (present in fruits and the active component of aspirin), dietary polyphenols produced by gut microbiota, metabolites from organic acidemias, and medium-chain fatty acids (MCFAs) are all metabolised/detoxified by the glycine conjugation pathway. Xenobiotics are first activated to an acyl-CoA by the mitochondrial xenobiotic/medium-chain fatty acid: CoA ligases (ACSMs) and subsequently conjugated to glycine by glycine N-acyltransferase (GLYAT). The MCFAs are activated to acyl-CoA by the ACSMs before entering mitochondrial β-oxidation. This two-step enzymatic pathway has, however, not been thoroughly investigated and the biggest gap in the literature remains the fact that studies continuously characterise the pathway as a one-step reaction. There are no studies available on the interaction/competition of the various substrates involved in the pathway, whilst very little research has been done on the ACSM ligases. To identify variants/haplotypes that should be characterised in future detoxification association studies, this study assessed the naturally observed sequence diversity and protein expression variation of ACSM2A and ACSM2B. The allelic variation, haplotype diversity, Tajima's D values, and phylogenetic analyses indicated that ACSM2A and ACSM2B are highly conserved. This confirmed an earlier hypothesis that the glycine conjugation pathway is highly conserved and essential for life as it maintains the CoA and glycine homeostasis in the liver mitochondria. The protein expression analyses showed that ACSM2A is the predominant transcript in liver. Future studies should investigate the effect of the variants identified in this study on the substrate specificity of these proteins.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 20 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 15%
Student > Bachelor 3 15%
Student > Master 2 10%
Lecturer > Senior Lecturer 1 5%
Lecturer 1 5%
Other 1 5%
Unknown 9 45%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 20%
Nursing and Health Professions 3 15%
Pharmacology, Toxicology and Pharmaceutical Science 1 5%
Veterinary Science and Veterinary Medicine 1 5%
Arts and Humanities 1 5%
Other 1 5%
Unknown 9 45%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 June 2018.
All research outputs
#16,728,456
of 25,382,440 outputs
Outputs from Molecular Genetics and Genomics
#2,701
of 3,321 outputs
Outputs of similar age
#209,777
of 341,958 outputs
Outputs of similar age from Molecular Genetics and Genomics
#10
of 22 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,321 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 17th percentile – i.e., 17% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 341,958 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 22 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.