↓ Skip to main content

Peripheral bronchial identification on chest CT using unsupervised machine learning

Overview of attention for article published in International Journal of Computer Assisted Radiology and Surgery, June 2018
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
21 Mendeley
Title
Peripheral bronchial identification on chest CT using unsupervised machine learning
Published in
International Journal of Computer Assisted Radiology and Surgery, June 2018
DOI 10.1007/s11548-018-1805-8
Pubmed ID
Authors

Daniel A. Moses, Laughlin Dawes, Claude Sammut, Tatjana Zrimec

Abstract

To automatically identify small- to medium-diameter bronchial segments distributed throughout the lungs. We segment the peripheral pulmonary vascular tree and construct cross-sectional images perpendicular to the lung vasculature. The bronchi running with pulmonary arteries appear as concentric rings, and potential center points that lie within the bronchi are identified by looking for circles (using the circular Hough transform) and rings (using a novel variable ring filter). The number of candidate bronchial center points are further reduced by using agglomerative hierarchical clustering applied to the points represented with 18 features pertaining to their 3D position, orientation and appearance of the surrounding cross-sectional image. Resulting clusters corresponded to bronchial segments. Parameters of the algorithm are varied and applied to two experimental data sets to find the best values for bronchial identification. The optimized algorithm was then applied to a further 21 CT studies obtained using two different CT vendors. The parameters that result in the most number of true positive bronchial center points with > 95% precision are a tolerance of 0.15 for the hierarchical clustering algorithm and a threshold of 75 HU with 10 spokes for the ring filter. Overall, the performance on all 21 test data sets from CT scans from both vendors demonstrates a mean number of 563 bronchial points detected per CT study, with a mean precision of 96%. The detected points across this group of test data sets are relatively uniformly distributed spatially with respect to spherical coordinates with the origin at the center of the test imaging data sets. We have constructed a robust algorithm for automatic detection of small- to medium-diameter bronchial segments throughout the lungs using a combination of knowledge-based approaches and unsupervised machine learning. It appears robust over two different CT vendors with similar acquisition parameters.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 21 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 19%
Student > Ph. D. Student 3 14%
Student > Master 3 14%
Lecturer > Senior Lecturer 1 5%
Student > Bachelor 1 5%
Other 2 10%
Unknown 7 33%
Readers by discipline Count As %
Medicine and Dentistry 10 48%
Engineering 2 10%
Physics and Astronomy 1 5%
Mathematics 1 5%
Unknown 7 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 November 2018.
All research outputs
#18,640,437
of 23,092,602 outputs
Outputs from International Journal of Computer Assisted Radiology and Surgery
#619
of 861 outputs
Outputs of similar age
#253,743
of 328,593 outputs
Outputs of similar age from International Journal of Computer Assisted Radiology and Surgery
#18
of 24 outputs
Altmetric has tracked 23,092,602 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 861 research outputs from this source. They receive a mean Attention Score of 3.1. This one is in the 21st percentile – i.e., 21% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,593 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 24 others from the same source and published within six weeks on either side of this one. This one is in the 25th percentile – i.e., 25% of its contemporaries scored the same or lower than it.