↓ Skip to main content

Role of autotaxin in cancer stem cells

Overview of attention for article published in Cancer and Metastasis Reviews, June 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
31 Dimensions

Readers on

mendeley
37 Mendeley
Title
Role of autotaxin in cancer stem cells
Published in
Cancer and Metastasis Reviews, June 2018
DOI 10.1007/s10555-018-9745-x
Pubmed ID
Authors

Dongjun Lee, Dong-Soo Suh, Sue Chin Lee, Gabor J. Tigyi, Jae Ho Kim

Abstract

Stem cells are a rare subpopulation defined by the potential to self-renew and differentiate into specific cell types. A population of stem-like cells has been reported to possess the ability of self-renewal, invasion, metastasis, and engraftment of distant tissues. This unique cell subpopulation has been designated as cancer stem cells (CSC). CSC were first identified in leukemia, and the contributions of CSC to cancer progression have been reported in many different types of cancers. The cancer stem cell hypothesis attempts to explain tumor cell heterogeneity based on the existence of stem cell-like cells within solid tumors. The elimination of CSC is challenging for most human cancer types due to their heightened genetic instability and increased drug resistance. To combat these inherent abilities of CSC, multi-pronged strategies aimed at multiple aspects of CSC biology are increasingly being recognized as essential for a cure. One of the most challenging aspects of cancer biology is overcoming the chemotherapeutic resistance in CSC. Here, we provide an overview of autotaxin (ATX), lysophosphatidic acid (LPA), and their signaling pathways in CSC. Increasing evidence supports the role of ATX and LPA in cancer progression, metastasis, and therapeutic resistance. Several studies have demonstrated the ATX-LPA axis signaling in different cancers. This lipid mediator regulatory system is a novel potential therapeutic target in CSC. In this review, we summarize the evidence linking ATX-LPA signaling to CSC and its impact on cancer progression and metastasis. We also provide evidence for the efficacy of cancer therapy involving the pharmacological inhibition of this signaling pathway.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 37 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 37 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 14%
Student > Ph. D. Student 5 14%
Student > Doctoral Student 3 8%
Professor 3 8%
Student > Bachelor 2 5%
Other 4 11%
Unknown 15 41%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 10 27%
Medicine and Dentistry 7 19%
Chemistry 2 5%
Neuroscience 1 3%
Unknown 17 46%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 June 2018.
All research outputs
#18,640,437
of 23,092,602 outputs
Outputs from Cancer and Metastasis Reviews
#681
of 817 outputs
Outputs of similar age
#253,012
of 328,090 outputs
Outputs of similar age from Cancer and Metastasis Reviews
#4
of 11 outputs
Altmetric has tracked 23,092,602 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 817 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 9th percentile – i.e., 9% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,090 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 11 others from the same source and published within six weeks on either side of this one. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.