↓ Skip to main content

Rab1-dependent ER–Golgi transport dysfunction is a common pathogenic mechanism in SOD1, TDP-43 and FUS-associated ALS

Overview of attention for article published in Acta Neuropathologica, August 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (89th percentile)
  • Good Attention Score compared to outputs of the same age and source (78th percentile)

Mentioned by

news
1 news outlet
twitter
3 X users
patent
1 patent

Citations

dimensions_citation
93 Dimensions

Readers on

mendeley
169 Mendeley
Title
Rab1-dependent ER–Golgi transport dysfunction is a common pathogenic mechanism in SOD1, TDP-43 and FUS-associated ALS
Published in
Acta Neuropathologica, August 2015
DOI 10.1007/s00401-015-1468-2
Pubmed ID
Authors

Kai Y. Soo, Mark Halloran, Vinod Sundaramoorthy, Sonam Parakh, Reka P. Toth, Katherine A. Southam, Catriona A. McLean, Peter Lock, Anna King, Manal A. Farg, Julie D. Atkin

Abstract

Several diverse proteins are linked genetically/pathologically to neurodegeneration in amyotrophic lateral sclerosis (ALS) including SOD1, TDP-43 and FUS. Using a variety of cellular and biochemical techniques, we demonstrate that ALS-associated mutant TDP-43, FUS and SOD1 inhibit protein transport between the endoplasmic reticulum (ER) and Golgi apparatus in neuronal cells. ER-Golgi transport was also inhibited in embryonic cortical and motor neurons obtained from a widely used animal model (SOD1(G93A) mice), validating this mechanism as an early event in disease. Each protein inhibited transport by distinct mechanisms, but each process was dependent on Rab1. Mutant TDP-43 and mutant FUS both inhibited the incorporation of secretory protein cargo into COPII vesicles as they bud from the ER, and inhibited transport from ER to the ER-Golgi intermediate (ERGIC) compartment. TDP-43 was detected on the cytoplasmic face of the ER membrane, whereas FUS was present within the ER, suggesting that transport is inhibited from the cytoplasm by mutant TDP-43, and from the ER by mutant FUS. In contrast, mutant SOD1 destabilised microtubules and inhibited transport from the ERGIC compartment to Golgi, but not from ER to ERGIC. Rab1 performs multiple roles in ER-Golgi transport, and over-expression of Rab1 restored ER-Golgi transport, and prevented ER stress, mSOD1 inclusion formation and induction of apoptosis, in cells expressing mutant TDP-43, FUS or SOD1. Rab1 also co-localised extensively with mutant TDP-43, FUS and SOD1 in neuronal cells, and Rab1 formed inclusions in motor neurons of spinal cords from sporadic ALS patients, which were positive for ubiquitinated TDP-43, implying that Rab1 is misfolded and dysfunctional in sporadic disease. These results demonstrate that ALS-mutant forms of TDP-43, FUS, and SOD1 all perturb protein transport in the early secretory pathway, between ER and Golgi compartments. These data also imply that restoring Rab1-mediated ER-Golgi transport is a novel therapeutic target in ALS.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 169 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 2 1%
Israel 1 <1%
Netherlands 1 <1%
Unknown 165 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 29 17%
Researcher 20 12%
Student > Master 20 12%
Student > Bachelor 19 11%
Student > Doctoral Student 11 7%
Other 28 17%
Unknown 42 25%
Readers by discipline Count As %
Neuroscience 37 22%
Biochemistry, Genetics and Molecular Biology 30 18%
Agricultural and Biological Sciences 28 17%
Medicine and Dentistry 12 7%
Chemistry 4 2%
Other 8 5%
Unknown 50 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 15. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 October 2020.
All research outputs
#2,086,115
of 22,903,988 outputs
Outputs from Acta Neuropathologica
#502
of 2,374 outputs
Outputs of similar age
#29,249
of 266,757 outputs
Outputs of similar age from Acta Neuropathologica
#6
of 23 outputs
Altmetric has tracked 22,903,988 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 90th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,374 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.3. This one has done well, scoring higher than 78% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 266,757 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 89% of its contemporaries.
We're also able to compare this research output to 23 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 78% of its contemporaries.