↓ Skip to main content

Tracing reinforcement through asymmetrical partner preference in the European common vole Microtus arvalis

Overview of attention for article published in BMC Ecology and Evolution, August 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 X users

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
33 Mendeley
Title
Tracing reinforcement through asymmetrical partner preference in the European common vole Microtus arvalis
Published in
BMC Ecology and Evolution, August 2015
DOI 10.1186/s12862-015-0455-5
Pubmed ID
Authors

Mathias Beysard, Rebecca Krebs-Wheaton, Gerald Heckel

Abstract

The mechanistic basis of speciation and in particular the contribution of behaviour to the completion of the speciation process is often contentious. Contact zones between related taxa provide a situation where selection against hybridization might reinforce separation by behavioural mechanisms, which could ultimately fully isolate the taxa. One of the most abundant European mammals, the common vole Microtus arvalis, forms multiple natural hybrid zones where rapidly diverging evolutionary lineages meet in secondary contact. Very narrow zones of hybridization spanning only a few kilometres and sex-specific gene flow patterns indicate reduced fitness of natural hybrids and incipient speciation between some of the evolutionary lineages. In this study, we examined the contribution of behavioural mechanisms to the speciation process in these rodents by fine-mapping allopatric and parapatric populations in the hybrid zone between the Western and Central lineages and experimental testing of the partner preferences of wild, pure-bred and hybrid female common voles. Genetic analysis based on microsatellite markers revealed the presence of multiple parapatric and largely non-admixed populations at distances of about 10 km at the edge of the area of natural hybridization between the Western and Central lineages. Wild females from Western parapatric populations and lab-born F1 hybrids preferred males from the Western lineage whereas wild females of Central parapatric origin showed no measurable preference. Furthermore, wild and lab-born females from allopatric populations of the Western or Central lineages showed no detectable preference for males from either lineage. The detected partner preferences are consistent with asymmetrical reinforcement of pre-mating reproductive isolation mechanisms in the European common vole and with earlier results suggesting that hybridization is more detrimental to the Western lineage. As a consequence, these differences in behaviour might contribute to a further geographical stabilization of this moving hybrid zone. Such behavioural processes could also provide a mechanistic perspective for frequently-detected asymmetrical introgression patterns in the largely allopatrically diversifying Microtus genus and other rapidly speciating rodents.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 33 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Switzerland 1 3%
Unknown 32 97%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 24%
Student > Bachelor 6 18%
Student > Ph. D. Student 6 18%
Student > Master 5 15%
Librarian 1 3%
Other 2 6%
Unknown 5 15%
Readers by discipline Count As %
Agricultural and Biological Sciences 13 39%
Biochemistry, Genetics and Molecular Biology 9 27%
Environmental Science 2 6%
Earth and Planetary Sciences 2 6%
Psychology 1 3%
Other 1 3%
Unknown 5 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 August 2015.
All research outputs
#16,047,334
of 25,373,627 outputs
Outputs from BMC Ecology and Evolution
#2,697
of 3,714 outputs
Outputs of similar age
#148,752
of 279,406 outputs
Outputs of similar age from BMC Ecology and Evolution
#52
of 77 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,714 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.5. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 279,406 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 77 others from the same source and published within six weeks on either side of this one. This one is in the 29th percentile – i.e., 29% of its contemporaries scored the same or lower than it.