↓ Skip to main content

Ionic liquids as water-compatible GC stationary phases for the analysis of fragrances and essential oils

Overview of attention for article published in Analytical & Bioanalytical Chemistry, February 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
25 Dimensions

Readers on

mendeley
26 Mendeley
Title
Ionic liquids as water-compatible GC stationary phases for the analysis of fragrances and essential oils
Published in
Analytical & Bioanalytical Chemistry, February 2018
DOI 10.1007/s00216-018-0922-0
Pubmed ID
Authors

Cecilia Cagliero, Carlo Bicchi, Chiara Cordero, Erica Liberto, Patrizia Rubiolo, Barbara Sgorbini

Abstract

Fragrances and products deriving from essential oils are often formulated or diluted in aqueous media, usually ethanol/water. Gas chromatography (GC) is the technique of choice to analyze volatiles. However, when using columns coated with conventional stationary phases, its application to aqueous samples often requires time-consuming and/or discriminative sample preparation techniques to extract the target analytes from the aqueous medium, so as to avoid its direct injection. In GC with conventional columns, water produces peak asymmetry, poor sensitivity and efficiency, strong adsorption, stationary phase degradation, and, last but not least, it is not easy to detect reliably when present in high amounts. In 2012, Armstrong's group introduced new fully water-compatible ionic-liquid (IL)-based GC capillary columns based on phosphonium and imidazolium derivative cations combined with trifluoromethanesulphonate. These columns were recently made available commercially by Supelco, under the trade name Watercol™. These derivatives maintain IL's unique selectivity and chromatographic properties, and enable water to be used as injection solvent, thus avoiding the sample preparation procedures required by conventional columns. This study reports and critically discusses the results of commercially available water-compatible IL columns for direct analysis of aqueous samples in the fragrance and essential oil fields by GC with thermal conductivity (TCD) and/or flame ionization detectors (FID). The results showed that water-compatible IL-based stationary phases can successfully be adopted for qualitative and quantitative analysis of fragrances and essential oils directly diluted in aqueous solvents. On the other hand, the study also shows that their inertness needs to be further increased and (possibly) the range of operative temperature extended when water is the main solvent of the sample.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 26 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 26 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 27%
Student > Bachelor 4 15%
Student > Ph. D. Student 3 12%
Student > Master 2 8%
Lecturer 1 4%
Other 3 12%
Unknown 6 23%
Readers by discipline Count As %
Chemistry 9 35%
Pharmacology, Toxicology and Pharmaceutical Science 3 12%
Agricultural and Biological Sciences 3 12%
Biochemistry, Genetics and Molecular Biology 1 4%
Medicine and Dentistry 1 4%
Other 1 4%
Unknown 8 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 July 2018.
All research outputs
#22,767,715
of 25,382,440 outputs
Outputs from Analytical & Bioanalytical Chemistry
#7,543
of 9,619 outputs
Outputs of similar age
#395,568
of 455,271 outputs
Outputs of similar age from Analytical & Bioanalytical Chemistry
#137
of 183 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 9,619 research outputs from this source. They receive a mean Attention Score of 3.1. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 455,271 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 183 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.