↓ Skip to main content

Cardiac differentiation at an initial low density of human-induced pluripotent stem cells

Overview of attention for article published in In Vitro Cellular & Developmental Biology - Animal, July 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
22 Mendeley
Title
Cardiac differentiation at an initial low density of human-induced pluripotent stem cells
Published in
In Vitro Cellular & Developmental Biology - Animal, July 2018
DOI 10.1007/s11626-018-0276-0
Pubmed ID
Authors

Minh Nguyen Tuyet Le, Mika Takahi, Kenshiro Maruyama, Akira Kurisaki, Kiyoshi Ohnuma

Abstract

A high density of human-induced pluripotent stem cells (hiPSCs) improves the efficiency of cardiac differentiation, suggesting the existence of indispensable cell-cell interaction signals. The complexity of interactions among cells at high density hinders the understanding of the roles of cell signals. In this study, we determined the minimum cell density that can initiate differentiation to facilitate cell-cell interaction studies. First, we co-induced cardiac differentiation in the presence of the glycogen synthase kinase-3β inhibitor CHIR99021 and activin A at various cell densities. At an initial low density, cells died within a few days in RPMI-based medium. We then investigated the culture conditions required to maintain cell viability. We used a basal medium excluding important components for the maintenance of hiPSC pluripotency, including activin A, basic fibroblast growth factor, and insulin. Supplementation of the basal medium with Rho-associated protein kinase inhibitor and insulin improved cell viability. Interestingly, addition of basic fibroblast growth factor enabled the expression of cardiac markers at the mRNA level but not the protein level. After further modification of the culture conditions, 10% of the cells expressed the cardiac troponin T protein, which is associated with cell contraction. The novel protocol for cardiac differentiation at an initial low cell density can also be used to evaluate high cell density conditions. The findings will facilitate the identification of cell signals required for cardiomyocyte formation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 22 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 18%
Researcher 3 14%
Student > Bachelor 2 9%
Unspecified 1 5%
Other 1 5%
Other 2 9%
Unknown 9 41%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 27%
Engineering 4 18%
Unspecified 1 5%
Chemistry 1 5%
Materials Science 1 5%
Other 0 0%
Unknown 9 41%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 July 2018.
All research outputs
#18,641,800
of 23,094,276 outputs
Outputs from In Vitro Cellular & Developmental Biology - Animal
#585
of 797 outputs
Outputs of similar age
#253,185
of 327,941 outputs
Outputs of similar age from In Vitro Cellular & Developmental Biology - Animal
#3
of 10 outputs
Altmetric has tracked 23,094,276 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 797 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 15th percentile – i.e., 15% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,941 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 10 others from the same source and published within six weeks on either side of this one. This one has scored higher than 7 of them.