↓ Skip to main content

Contrast agent concentration optimization in CTA using low tube voltage and dual-energy CT in multiple vendors: a phantom study

Overview of attention for article published in The International Journal of Cardiovascular Imaging, March 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
46 Dimensions

Readers on

mendeley
80 Mendeley
Title
Contrast agent concentration optimization in CTA using low tube voltage and dual-energy CT in multiple vendors: a phantom study
Published in
The International Journal of Cardiovascular Imaging, March 2018
DOI 10.1007/s10554-018-1329-x
Pubmed ID
Authors

Robbert W. van Hamersvelt, Nienke G. Eijsvoogel, Casper Mihl, Pim A. de Jong, Arnold M. R. Schilham, Nico Buls, Marco Das, Tim Leiner, Martin J. Willemink

Abstract

We investigated the feasibility and extent to which iodine concentration can be reduced in computed tomography angiography imaging of the aorta and coronary arteries using low tube voltage and virtual monochromatic imaging of 3 major dual-energy CT (DECT) vendors. A circulation phantom was imaged with dual source CT (DSCT), gemstone spectral imaging (GSI) and dual-layer spectral detector CT (SDCT). For each scanner, a reference scan was acquired at 120 kVp using routine iodine concentration (300 mg I/ml). Subsequently, scans were acquired at lowest possible tube potential (70, 80, 80 kVp, respectively), and DECT-mode (80/150Sn, 80/140 and 120 kVp, respectively) in arterial phase after administration of iodine (300, 240, 180, 120, 60, 30 mg I/ml). Objective image quality was evaluated using attenuation, CNR and dose corrected CNR (DCCNR) measured in the aorta and left main coronary artery. Average DCCNR at reference was 227.0, 39.7 and 60.2 for DSCT, GSI and SDCT. Maximum iodine concentration reduction without loss of DCCNR was feasible down to 180 mg I/ml (40% reduced) for DSCT (DCCNR 467.1) and GSI (DCCNR 46.1) using conventional CT low kVp, and 120 mg I/ml (60% reduced) for SDCT (DCCNR 171.5) using DECT mode. Low kVp scanning and DECT allows for 40-60% iodine reduction without loss in image quality compared to reference. Optimal scan protocol and to which extent varies per vendor. Further patient studies are needed to extend and translate our findings to clinical practice.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 80 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 80 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 14%
Researcher 9 11%
Student > Master 8 10%
Student > Bachelor 7 9%
Other 7 9%
Other 13 16%
Unknown 25 31%
Readers by discipline Count As %
Medicine and Dentistry 32 40%
Physics and Astronomy 9 11%
Nursing and Health Professions 5 6%
Agricultural and Biological Sciences 2 3%
Computer Science 2 3%
Other 5 6%
Unknown 25 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 July 2018.
All research outputs
#20,663,600
of 25,382,440 outputs
Outputs from The International Journal of Cardiovascular Imaging
#1,292
of 2,012 outputs
Outputs of similar age
#272,077
of 348,490 outputs
Outputs of similar age from The International Journal of Cardiovascular Imaging
#18
of 28 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,012 research outputs from this source. They receive a mean Attention Score of 2.3. This one is in the 27th percentile – i.e., 27% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 348,490 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 11th percentile – i.e., 11% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 28 others from the same source and published within six weeks on either side of this one. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.