↓ Skip to main content

Study of pallial neurogenesis in shark embryos and the evolutionary origin of the subventricular zone

Overview of attention for article published in Brain Structure and Function, July 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (73rd percentile)
  • Good Attention Score compared to outputs of the same age and source (76th percentile)

Mentioned by

twitter
5 X users
wikipedia
2 Wikipedia pages

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
26 Mendeley
Title
Study of pallial neurogenesis in shark embryos and the evolutionary origin of the subventricular zone
Published in
Brain Structure and Function, July 2018
DOI 10.1007/s00429-018-1705-2
Pubmed ID
Authors

A. Docampo-Seara, R. Lagadec, S. Mazan, M. A. Rodríguez, I. Quintana-Urzainqui, E. Candal

Abstract

The dorsal part of the developing telencephalon is one of the brain areas that has suffered most drastic changes throughout vertebrate evolution. Its evolutionary increase in complexity was thought to be partly achieved by the appearance of a new neurogenic niche in the embryonic subventricular zone (SVZ). Here, a new kind of amplifying progenitors (basal progenitors) expressing Tbr2, undergo a second round of divisions, which is believed to have contributed to the expansion of the neocortex. Accordingly, the existence of a pallial SVZ has been classically considered exclusive of mammals. However, the lack of studies in ancient vertebrates precludes any clear conclusion about the evolutionary origin of the SVZ and the neurogenic mechanisms that rule pallial development. In this work, we explore pallial neurogenesis in a basal vertebrate, the shark Scyliorhinus canicula, through the study of the expression patterns of several neurogenic markers. We found that apical progenitors and radial migration are present in sharks, and therefore, their presence must be highly conserved throughout evolution. Surprisingly, we detected a subventricular band of ScTbr2-expressing cells, some of which also expressed mitotic markers, indicating that the existence of basal progenitors should be considered an ancestral condition rather than a novelty of mammals or amniotes. Finally, we report that the transcriptional program for the specification of glutamatergic pallial cells (Pax6, Tbr2, NeuroD, Tbr1) is also present in sharks. However, the segregation of these markers into different cell types is not clear yet, which may be linked to the lack of layering in anamniotes.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 26 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 26 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 23%
Student > Ph. D. Student 6 23%
Student > Bachelor 4 15%
Professor 2 8%
Other 1 4%
Other 2 8%
Unknown 5 19%
Readers by discipline Count As %
Neuroscience 8 31%
Biochemistry, Genetics and Molecular Biology 5 19%
Agricultural and Biological Sciences 4 15%
Medicine and Dentistry 1 4%
Unknown 8 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 March 2020.
All research outputs
#4,804,147
of 24,217,893 outputs
Outputs from Brain Structure and Function
#355
of 1,725 outputs
Outputs of similar age
#87,355
of 331,390 outputs
Outputs of similar age from Brain Structure and Function
#8
of 34 outputs
Altmetric has tracked 24,217,893 research outputs across all sources so far. Compared to these this one has done well and is in the 80th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,725 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.0. This one has done well, scoring higher than 79% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 331,390 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 73% of its contemporaries.
We're also able to compare this research output to 34 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 76% of its contemporaries.