↓ Skip to main content

Myocardium segmentation from DE MRI with guided random walks and sparse shape representation

Overview of attention for article published in International Journal of Computer Assisted Radiology and Surgery, July 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
22 Mendeley
Title
Myocardium segmentation from DE MRI with guided random walks and sparse shape representation
Published in
International Journal of Computer Assisted Radiology and Surgery, July 2018
DOI 10.1007/s11548-018-1817-4
Pubmed ID
Authors

Jie Liu, Xiahai Zhuang, Hongzhi Xie, Shuyang Zhang, Lixu Gu

Abstract

For patients with myocardial infarction (MI), delayed enhancement (DE) cardiovascular magnetic resonance imaging (MRI) is a sensitive and well-validated technique for the detection and visualization of MI. The myocardium viability assessment with DE MRI is important in diagnosis and treatment management, where myocardium segmentation is a prerequisite. However, few academic works have focused on automated myocardium segmentation from DE images. In this study, we aim to develop an automatic myocardium segmentation algorithm that targets DE images. We propose a segmentation framework based on both prior shape knowledge and image intensity. Instead of the strong request of the pre-segmentation of cine MRI in the same session, we use the sparse representation method to model the myocardium shape. Data from the Cardiac MR Left Ventricle Segmentation Challenge (2009) are used to build the shape template repository. The method of guided random walks is used to integrate the shape model and intensity information. An iterative approach is used to gradually improve the results. The proposed method was tested on the DE MRI data from 30 MI patients. The proposed method achieved Dice similarity coefficients (DSC) of 74.60 ± 7.79% with 201 shape templates and 73.56 ± 6.32% with 56 shape templates, which were close to the inter-observer difference (73.94 ± 5.12%). To test the generalization of the proposed method to routine clinical images, the DE images of 10 successive new patients were collected, which were unseen during the method development and parameter tuning, and a DSC of 76.02 ± 7.43% was achieved. The authors propose a novel approach for the segmentation of myocardium from DE MRI by using the sparse representation-based shape model and guided random walks. The sparse representation method effectively models the prior shape with a small number of shape templates, and the proposed method has the potential to achieve clinically relevant results.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 22 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 23%
Lecturer 3 14%
Other 2 9%
Researcher 2 9%
Student > Master 2 9%
Other 2 9%
Unknown 6 27%
Readers by discipline Count As %
Computer Science 10 45%
Medicine and Dentistry 2 9%
Biochemistry, Genetics and Molecular Biology 1 5%
Business, Management and Accounting 1 5%
Mathematics 1 5%
Other 2 9%
Unknown 5 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 July 2018.
All research outputs
#20,525,274
of 23,094,276 outputs
Outputs from International Journal of Computer Assisted Radiology and Surgery
#679
of 861 outputs
Outputs of similar age
#287,075
of 327,720 outputs
Outputs of similar age from International Journal of Computer Assisted Radiology and Surgery
#14
of 20 outputs
Altmetric has tracked 23,094,276 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 861 research outputs from this source. They receive a mean Attention Score of 3.1. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,720 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 20 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.