↓ Skip to main content

Hepatic encephalopathy changes mitochondrial dynamics and autophagy in the substantia nigra

Overview of attention for article published in Metabolic Brain Disease, July 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
16 Mendeley
Title
Hepatic encephalopathy changes mitochondrial dynamics and autophagy in the substantia nigra
Published in
Metabolic Brain Disease, July 2018
DOI 10.1007/s11011-018-0275-6
Pubmed ID
Authors

Yunhu Bai, Yayun Wang, Yanling Yang

Abstract

Hepatic encephalopathy (HE) has been reported in more than 40% of patients with cirrhosis in clinical practice. HE changes mitochondrial dysfunction. Mitochondrial dynamics and autophagy are important for maintaining and removing damaged mitochondria. We used molecular biology and morphology methods to evaluate changes in mitochondrial dynamics and autophagy of the substantia nigra (SN) and prefrontal cortex (PFC) in HE. In this study, we observed that HE increased mitochondrial dynamics and autophagy in the SN, which was not seen in the PFC. HE stimulated dynamin-related protein 1 (DRP1) transformation from the cytosolic to the mitochondria within SN cells, which increased mitochondrial fission and the number of mitochondria. The fusion protein L-OPA1 (long isoforms of OPA1) was increased in the SN of HE mice. HE also increased the levels of autophagy proteins PINK1/PARKIN and P62/LC3-B in the SN, which can selectively remove damaged mitochondria and cell, respectively. Additionally, we used electron microscopy to directly observe changes in mitochondrial morphology in the SN of HE mice and found the number of mitochondria was increased. However, there were no significant changes in the fission, fusion or autophagy proteins in PFC-purified mitochondrial proteins in HE mice. The number of mitochondria also did not show alterations in the PFC of HE mice compared with that in a sham group. These results illustrate that mitochondria can protect themselves by changing the dynamics and autophagy in the SN of HE mice. Changes in the mitochondrial dynamics and autophagy related to HE can help repair damaged mitochondria and provide a further understanding of the mechanisms of hepatic encephalopathy.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 16 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 16 100%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 3 19%
Student > Bachelor 2 13%
Student > Postgraduate 2 13%
Student > Ph. D. Student 2 13%
Unspecified 1 6%
Other 3 19%
Unknown 3 19%
Readers by discipline Count As %
Neuroscience 5 31%
Biochemistry, Genetics and Molecular Biology 2 13%
Nursing and Health Professions 2 13%
Pharmacology, Toxicology and Pharmaceutical Science 1 6%
Physics and Astronomy 1 6%
Other 3 19%
Unknown 2 13%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 July 2018.
All research outputs
#15,540,879
of 23,096,849 outputs
Outputs from Metabolic Brain Disease
#588
of 1,065 outputs
Outputs of similar age
#208,614
of 326,767 outputs
Outputs of similar age from Metabolic Brain Disease
#16
of 24 outputs
Altmetric has tracked 23,096,849 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,065 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.3. This one is in the 37th percentile – i.e., 37% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,767 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 24 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.