↓ Skip to main content

Interpolating hourly temperatures for computing agroclimatic metrics

Overview of attention for article published in International Journal of Biometeorology, July 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
31 Mendeley
Title
Interpolating hourly temperatures for computing agroclimatic metrics
Published in
International Journal of Biometeorology, July 2018
DOI 10.1007/s00484-018-1582-7
Pubmed ID
Authors

Eike Luedeling

Abstract

Calculating many agroclimatic metrics, e.g., chill or heat accumulation in orchards, requires continuous records of hourly temperature. Such records are often unavailable, with farm managers and researchers relying on daily data or hourly records with gaps. While procedures for generating idealized temperature curves exist, interpolating hourly records has long been a challenge. The SolveHours procedure combines measured hourly temperatures, idealized daily temperature curves and proxy data to fill gaps in such records. It first determines daily temperature extremes by solving systems of linear equations that express the typical relationships between hourly temperatures and daily temperature extremes for every hour. After filling gaps in this record with bias-corrected data from proxy stations or by linear interpolation, SolveHours uses these data to generate an idealized temperature curve. Deviations of recorded hourly temperatures from this curve are calculated, linearly interpolated, and added to the idealized curve to obtain a gapless record. The procedure was compared to alternative gap-filling algorithms using an 8-month dataset from an orchard near Winters, CA, in which half the records were replaced by 500 gaps of random length. The SolveHours procedure achieved ratio of performance to interquartile distance (RPIQ) values of 6.7 (when using temperature extremes from a proxy station) and 8.2 (with temperature extremes measured on site), with root mean square errors of 1.6 and 1.3 °C, respectively. It outperformed all other algorithms in reproducing recorded accumulation of Chill Portions and Growing Degree Hours. The SolveHours procedure is implemented in the chillR package for the R programming environment ( https://cran.r-project.org/web/packages/chillR/vignettes/hourly_temperatures.html ).

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 31 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 29%
Student > Ph. D. Student 5 16%
Student > Master 3 10%
Professor 2 6%
Student > Postgraduate 2 6%
Other 6 19%
Unknown 4 13%
Readers by discipline Count As %
Agricultural and Biological Sciences 8 26%
Earth and Planetary Sciences 4 13%
Environmental Science 2 6%
Business, Management and Accounting 2 6%
Engineering 2 6%
Other 6 19%
Unknown 7 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 September 2018.
All research outputs
#13,622,705
of 23,096,849 outputs
Outputs from International Journal of Biometeorology
#914
of 1,301 outputs
Outputs of similar age
#168,997
of 326,757 outputs
Outputs of similar age from International Journal of Biometeorology
#12
of 20 outputs
Altmetric has tracked 23,096,849 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,301 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.2. This one is in the 28th percentile – i.e., 28% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,757 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 20 others from the same source and published within six weeks on either side of this one. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.