↓ Skip to main content

BrFLC5: a weak regulator of flowering time in Brassica rapa

Overview of attention for article published in Theoretical and Applied Genetics, July 2018
Altmetric Badge

Mentioned by

twitter
3 X users

Citations

dimensions_citation
28 Dimensions

Readers on

mendeley
19 Mendeley
Title
BrFLC5: a weak regulator of flowering time in Brassica rapa
Published in
Theoretical and Applied Genetics, July 2018
DOI 10.1007/s00122-018-3139-x
Pubmed ID
Authors

Xi Xi, Keyun Wei, Baozhen Gao, Jiahe Liu, Jianli Liang, Feng Cheng, Xiaowu Wang, Jian Wu

Abstract

A splicing site mutation in BrFLC5, a non-syntenic paralogue of FLOWERING LOCUS C, was demonstrated to be related to flowering time variation in Brassica rapa. Flowering time regulation in Brassica rapa is more complex than in Arabidopsis, as there are multiple paralogues of flowering time genes in B. rapa. Brassica rapa contains four FLOWERING LOCUS C (FLC) genes, three of which are syntenic orthologues of AtFLC, while BrFLC5 is not. BrFLC1, BrFLC2, and BrFLC3 have been reported to be involved in flowering time regulation. However, BrFLC5 has thus far been deemed a pseudogene. We detected two alternative splicing patterns of BrFLC5 resulting from a nucleotide mutation (G/A) at the first nucleotide of intron 3 (named as Pi3+1(G/A)). Genotyping of BrFLC5Pi3 + 1(G/A) for 301 B. rapa accessions showed that this single nucleotide polymorphism was significantly related to flowering time variation (p < 0.001). In the collection, the frequency of the functional G allele (35.2%) was much lower than that of the nonfunctional A allele (59.1%); however, the frequency of the G allele was very high among the turnips (83.6%). An F2 population segregating at this locus was developed to analyze the genetic effect of BrFLC5. The result showed that the G allele individuals began to bolt two days later than the A allele individuals, indicating that BrFLC5 is a weak regulator of flowering time. BrFLC5 was expressed at the lowest level among the three analyzed BrFLCs. The late allele (G allele) was dominant to the early allele (A allele) at the BrFLC5 locus, which was in contrast to that of BrFLC1 and BrFLC2. This characteristic suggests that BrFLC5 would be more efficient for breeding premature bolting resistance in B. rapa.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 19 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 32%
Student > Ph. D. Student 3 16%
Student > Master 3 16%
Student > Doctoral Student 2 11%
Professor 1 5%
Other 0 0%
Unknown 4 21%
Readers by discipline Count As %
Agricultural and Biological Sciences 13 68%
Biochemistry, Genetics and Molecular Biology 2 11%
Unknown 4 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 July 2018.
All research outputs
#16,031,680
of 23,794,258 outputs
Outputs from Theoretical and Applied Genetics
#2,892
of 3,565 outputs
Outputs of similar age
#210,906
of 328,318 outputs
Outputs of similar age from Theoretical and Applied Genetics
#45
of 50 outputs
Altmetric has tracked 23,794,258 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,565 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 14th percentile – i.e., 14% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,318 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 50 others from the same source and published within six weeks on either side of this one. This one is in the 10th percentile – i.e., 10% of its contemporaries scored the same or lower than it.