↓ Skip to main content

Signal Propagation in Sensing and Reciprocating Cellular Systems with Spatial and Structural Heterogeneity

Overview of attention for article published in Bulletin of Mathematical Biology, May 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (64th percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
15 Mendeley
Title
Signal Propagation in Sensing and Reciprocating Cellular Systems with Spatial and Structural Heterogeneity
Published in
Bulletin of Mathematical Biology, May 2018
DOI 10.1007/s11538-018-0439-x
Pubmed ID
Authors

Arran Hodgkinson, Gilles Uzé, Ovidiu Radulescu, Dumitru Trucu

Abstract

Sensing and reciprocating cellular systems (SARs) are important for the operation of many biological systems. Production in interferon (IFN) SARs is achieved through activation of the Jak-Stat pathway, and downstream upregulation of IFN regulatory factor (IRF)-7 and IFN transcription, but the role that high- and low-affinity IFNs play in this process remains unclear. We present a comparative between a minimal spatio-temporal partial differential equation model and a novel spatio-structural-temporal (SST) model for the consideration of receptor, binding, and metabolic aspects of SAR behaviour. Using the SST framework, we simulate single- and multi-cluster paradigms of IFN communication. Simulations reveal a cyclic process between the binding of IFN to the receptor, and the consequent increase in metabolism, decreasing the propensity for binding due to the internal feedback mechanism. One observes the effect of heterogeneity between cellular clusters, allowing them to individualise and increase local production, and within clusters, where we observe 'subpopular quiescence'; a process whereby intra-cluster subpopulations reduce their binding and metabolism such that other such subpopulations may augment their production. Finally, we observe the ability for low-affinity IFN to communicate a long range signal, where high affinity cannot, and the breakdown of this relationship through the introduction of cell motility. Biological systems may utilise cell motility where environments are unrestrictive and may use fixed system, with low-affinity communication, where a localised response is desirable.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 15 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 15 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 33%
Other 1 7%
Professor 1 7%
Student > Bachelor 1 7%
Student > Master 1 7%
Other 1 7%
Unknown 5 33%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 20%
Chemical Engineering 1 7%
Mathematics 1 7%
Agricultural and Biological Sciences 1 7%
Psychology 1 7%
Other 3 20%
Unknown 5 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 July 2018.
All research outputs
#13,622,705
of 23,096,849 outputs
Outputs from Bulletin of Mathematical Biology
#546
of 1,105 outputs
Outputs of similar age
#169,087
of 326,413 outputs
Outputs of similar age from Bulletin of Mathematical Biology
#8
of 31 outputs
Altmetric has tracked 23,096,849 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,105 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 48th percentile – i.e., 48% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,413 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 31 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 64% of its contemporaries.