↓ Skip to main content

An Improved Approach for Forecasting Ecological Impacts from Future Drilling in Unconventional Shale Oil and Gas Plays

Overview of attention for article published in Environmental Management, April 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
29 Mendeley
Title
An Improved Approach for Forecasting Ecological Impacts from Future Drilling in Unconventional Shale Oil and Gas Plays
Published in
Environmental Management, April 2018
DOI 10.1007/s00267-018-1042-5
Pubmed ID
Authors

Brad D. Wolaver, Jon Paul Pierre, Svetlana A. Ikonnikova, John R. Andrews, Guinevere McDaid, Wade A. Ryberg, Toby J. Hibbitts, Charles M. Duran, Benjamin J. Labay, Travis J. LaDuc

Abstract

Directional well drilling and hydraulic fracturing has enabled energy production from previously inaccessible resources, but caused vegetation conversion and landscape fragmentation, often in relatively undisturbed habitats. We improve forecasts of future ecological impacts from unconventional oil and gas play developments using a new, more spatially-explicit approach. We applied an energy production outlook model, which used geologic and economic data from thousands of wells and three oil price scenarios, to map future drilling patterns and evaluate the spatial distribution of vegetation conversion and habitat impacts. We forecast where future well pad construction may be most intense, illustrating with an example from the Eagle Ford Shale Play of Texas. We also illustrate the ecological utility of this approach using the Spot-tailed Earless Lizard (Holbrookia lacerata) as the focal species, which historically occupied much of the Eagle Ford and awaits a federal decision for possible Endangered Species Act protection. We found that ~17,000-45,500 wells would be drilled 2017‒2045 resulting in vegetation conversion of ~26,485-70,623 ha (0.73-1.96% of pre-development vegetation), depending on price scenario ($40-$80/barrel). Grasslands and row crop habitats were most affected (2.30 and 2.82% areal vegetation reduction). Our approach improves forecasts of where and to what extent future energy development in unconventional plays may change land-use and ecosystem services, enabling natural resource managers to anticipate and direct on-the-ground conservation actions to places where they will most effectively mitigate ecological impacts of well pads and associated infrastructure.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 29 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 17%
Student > Master 5 17%
Student > Ph. D. Student 3 10%
Other 2 7%
Student > Bachelor 2 7%
Other 1 3%
Unknown 11 38%
Readers by discipline Count As %
Environmental Science 7 24%
Agricultural and Biological Sciences 6 21%
Chemical Engineering 1 3%
Chemistry 1 3%
Engineering 1 3%
Other 0 0%
Unknown 13 45%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 July 2018.
All research outputs
#20,663,600
of 25,382,440 outputs
Outputs from Environmental Management
#1,653
of 1,914 outputs
Outputs of similar age
#266,940
of 342,076 outputs
Outputs of similar age from Environmental Management
#28
of 32 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,914 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.0. This one is in the 4th percentile – i.e., 4% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 342,076 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 11th percentile – i.e., 11% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 32 others from the same source and published within six weeks on either side of this one. This one is in the 6th percentile – i.e., 6% of its contemporaries scored the same or lower than it.