↓ Skip to main content

New Insights into Epigenetic and Pharmacological Regulation of Amyloid-Degrading Enzymes

Overview of attention for article published in Neurochemical Research, September 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (85th percentile)
  • High Attention Score compared to outputs of the same age and source (94th percentile)

Mentioned by

news
1 news outlet
twitter
5 X users

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
40 Mendeley
Title
New Insights into Epigenetic and Pharmacological Regulation of Amyloid-Degrading Enzymes
Published in
Neurochemical Research, September 2015
DOI 10.1007/s11064-015-1703-1
Pubmed ID
Authors

Natalia N. Nalivaeva, Nikolai D. Belyaev, Anthony J. Turner

Abstract

Currently, deficit of amyloid β-peptide (Aβ) clearance from the brain is considered as one of the possible causes of amyloid accumulation and neuronal death in the sporadic form of Alzheimer's disease (AD). Aβ clearance can involve either specific proteases present in the brain or Aβ-binding/transport proteins. Among amyloid-degrading enzymes the most intensively studied are neprilysin (NEP) and insulin-degrading enzyme (IDE). Since ageing and development of brain pathologies is often accompanied by a deficit in the levels of expression and activity of these enzymes in the brain, there is an urgent need to understand the mechanisms involved in their regulation. We have recently reported that NEP and also an Aβ-transport protein, transthyretin are epigenetically co-regulated by the APP intracellular domain (AICD) and this regulation depends on the cell type and APP695 isoform expression in a process that can be regulated by the tyrosine kinase inhibitor, Gleevec. We have now extended our work and shown that, unlike NEP, another amyloid-degrading enzyme, IDE, is not related to over-expression of APP695 in neuroblastoma SH-SY5Y cells but is up-regulated by APP751 and APP770 isoforms independently of AICD but correlating with reduced HDAC1 binding to its promoter. Studying the effect of the nuclear retinoid X receptor agonist, bexarotene, on NEP and IDE expression, we have found that both enzymes can be up-regulated by this compound but this mechanism is not APP-isoform specific and does not involve AICD but, on the contrary, affects HDAC1 occupancy on the NEP gene promoter. These new insights into the mechanisms of NEP and IDE regulation suggest possible pharmacological targets in developing AD therapies.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 40 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 18%
Researcher 5 13%
Student > Bachelor 5 13%
Student > Master 5 13%
Other 3 8%
Other 7 18%
Unknown 8 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 7 18%
Neuroscience 5 13%
Biochemistry, Genetics and Molecular Biology 5 13%
Medicine and Dentistry 4 10%
Pharmacology, Toxicology and Pharmaceutical Science 3 8%
Other 7 18%
Unknown 9 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 12. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 October 2015.
All research outputs
#2,683,884
of 22,828,180 outputs
Outputs from Neurochemical Research
#88
of 2,097 outputs
Outputs of similar age
#34,717
of 245,084 outputs
Outputs of similar age from Neurochemical Research
#2
of 38 outputs
Altmetric has tracked 22,828,180 research outputs across all sources so far. Compared to these this one has done well and is in the 88th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,097 research outputs from this source. They receive a mean Attention Score of 4.3. This one has done particularly well, scoring higher than 95% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 245,084 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 85% of its contemporaries.
We're also able to compare this research output to 38 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 94% of its contemporaries.